Определение линейной зависимости. Линейно зависимые и линейно независимые вектора

Линейная зависимость векторов

При решении различных задач, как правило, приходится иметь дело не с одним вектором, а с некоторой совокупностью векторов одной и той же размерности. Такие совокупности называют системой векторов и обозначают

Определение. Линейной комбинацией векторов называется вектор вида

где - любые действительные числа. Также говорят, что вектор линейно выражается через векторы или разлагается по этим векторам.

Например, пусть даны три вектора: , , . Их линейной комбинацией с коэффициентами соответственно 2, 3 и 4 является вектор

Определение. Множество всевозможных линейных комбинаций системы векторов называется линейной оболочкой этой системы.

Определение. Система ненулевых векторов называется линейно зависимой , если существуют такие числа , не равные одновременно нулю, что линейная комбинация данной системы с указанными числами равна нулевому вектору:

Если же последнее равенство для данной системы векторов возможно лишь при , то эта система векторов называется линейно независимой .

Например, система двух векторов , линейно независима; система двух векторов и линейно зависима, так как .

Пусть система векторов (19) линейно зависима. Выберем в сумме (20) слагаемое, в котором коэффициент , и выразим его через остальные слагаемые:

Как видно из этого равенства, один из векторов линейно зависимой системы (19) оказался выраженным через другие векторы этой системы (или разлагается по остальным ее векторам).

Свойства линейно зависимой системы векторов

1. Система, состоящая из одного ненулевого вектора, линейно независима.

2. Система, содержащая нулевой вектор, всегда линейно зависима.

3. Система, содержащая более одного вектора, линейно зависима тогда и только тогда, когда среди ее векторов содержится, по крайней мере, один вектор, который линейно выражается через остальные.

Геометрический смысл линейной зависимости в случае двухмерных векторов на плоскости: когда один вектор выражается через другой, мы имеем , т.е. эти векторы коллинеарны, или что то же самое, находятся на параллельных прямых.

В пространственном случае линейной зависимости трех векторов они параллельны одной плоскости, т.е. компланарны . Достаточно «подправить» соответствующими сомножителями длины этих векторов, чтобы один из них стал суммой двух других или выражался через них.

Теорема. В пространстве любая система, содержащая векторов, линейно зависима при .

Пример. Выяснить, являются ли векторы линейно зависимыми.

Решение . Составим векторное равенство . Записывая в виде вектор-столбцов, получаем



Таким образом, задача свелась к решению системы

Решим систему методом Гаусса:

В результате получим систему уравнений:

которая имеет бесконечное множество решений, среди которых обязательно найдется одно ненулевое, следовательно, векторы линейно зависимые.

Система векторов , называется линейно зависимой , если существуют такие числа , среди которых хотя бы одно отлично от нуля, что выполняется равенство https://pandia.ru/text/78/624/images/image004_77.gif" width="57" height="24 src=">.

Если же это равенство выполняется только в том случае, когда все , то система векторов называется линейно независимой .

Теорема. Система векторов , будет линейно зависимой тогда и только тогда, когда хотя бы один из ее векторов является линейной комбинацией остальных.

Пример 1. Многочлен является линейной комбинацией многочленов https://pandia.ru/text/78/624/images/image010_46.gif" width="88 height=24" height="24">. Многочлены составляют линейно независимую систему, так как многочлен https://pandia.ru/text/78/624/images/image012_44.gif" width="129" height="24">.

Пример 2. Система матриц , , https://pandia.ru/text/78/624/images/image016_37.gif" width="51" height="48 src="> является линейно независимой, так как линейная комбинация равна нулевой матрице только в том случае, когда https://pandia.ru/text/78/624/images/image019_27.gif" width="69" height="21">, , https://pandia.ru/text/78/624/images/image022_26.gif" width="40" height="21"> линейно зависимой.

Решение.

Составим линейную комбинацию данных векторов https://pandia.ru/text/78/624/images/image023_29.gif" width="97" height="24">=0..gif" width="360" height="22">.

Приравнивая одноименные координаты равных векторов, получаем https://pandia.ru/text/78/624/images/image027_24.gif" width="289" height="69">

Окончательно получим

и

Система имеет единственное тривиальное решение, поэтому линейная комбинация данных векторов равна нулю только в случае, когда все коэффициенты равны нулю. Поэтому данная система векторов линейно независима.

Пример 4. Векторы линейно независимы. Какими будут системы векторов

a). ;

b). ?

Решение.

a). Составим линейную комбинацию и приравняем её к нулю

Используя свойства операций с векторами в линейном пространстве, перепишем последнее равенство в виде

Так как векторы линейно независимы, то коэффициенты при должны быть равны нулю, т. е..gif" width="12" height="23 src=">

Полученная система уравнений имеет единственное тривиальное решение .

Так как равенство (*) выполняется только при https://pandia.ru/text/78/624/images/image031_26.gif" width="115 height=20" height="20"> – линейно независимы;


b). Составим равенство https://pandia.ru/text/78/624/images/image039_17.gif" width="265" height="24 src=">(**)

Применяя аналогичные рассуждения, получим

Решая систему уравнений методом Гаусса, получим

или

Последняя система имеет бесконечное множество решений https://pandia.ru/text/78/624/images/image044_14.gif" width="149" height="24 src=">. Таким образом, существует, ненулевой набор коэффициентов, для которого выполняется равенство (**) . Следовательно, система векторов – линейно зависима.

Пример 5 Система векторов линейно независима, а система векторов линейно зависима..gif" width="80" height="24">.gif" width="149 height=24" height="24">(***)

В равенстве (***) . Действительно, при система была бы линейно зависимой.

Из соотношения (***) получаем или Обозначим .

Получим

Задачи для самостоятельного решения (в аудитории)

1. Система, содержащая нулевой вектор, линейно зависима.

2. Система, состоящая из одного вектора а , линейно зависима тогда и только тогда, когда, а=0 .

3. Система, состоящая из двух векторов, линейно зависима тогда и только тогда, когда, векторы пропорциональны (т. е. один из них получается из другого умножением на число).

4. Если к линейно зависимой системе добавить вектор, то получится линейно зависимая система.

5. Если из линейно независимой системы удалить вектор, то полученная система векторов линейна независима.

6. Если система S линейно независима, но становится линейно зависимой при добавлении вектора b , то вектор b линейно выражается через векторы системы S .

c). Система матриц , , в пространстве матриц второго порядка.

10. Пусть система векторов a, b, c векторного пространства линейно независима. Докажите линейную независимость следующих систем векторов:

a). a+ b, b, c.

b). a+ https://pandia.ru/text/78/624/images/image062_13.gif" width="15" height="19">– произвольное число

c). a+ b, a+c, b+c.

11. Пусть a, b, c – три вектора на плоскости, из которых можно сложить треугольник. Будут ли эти векторы линейно зависимы?

12. Даны два вектора a1=(1, 2, 3, 4), a2=(0, 0, 0, 1) . Подобрать ещё два четырёхмерных вектора a3 и a4 так, чтобы система a1, a2, a3, a4 была линейно независимой.


Понятия линейной зависимости и независимости системы векторов является очень важными при изучении алгебры векторов, так как на них базируются понятия размерности и базиса пространства. В этой статье мы дадим определения, рассмотрим свойства линейной зависимости и независимости, получим алгоритм исследования системы векторов на линейную зависимость и подробно разберем решения примеров.

Навигация по странице.

Определение линейной зависимости и линейной независимости системы векторов.

Рассмотрим набор из p n-мерных векторов , обозначим их следующим образом . Составим линейную комбинацию этих векторов и произвольных чисел (действительных или комплексных): . Отталкиваясь от определения операций над n -мерными векторами, а так же свойств операций сложения векторов и умножения вектора на число, можно утверждать, что записанная линейная комбинация представляет собой некоторый n -мерный вектор , то есть, .

Так мы подошли к определению линейной зависимости системы векторов .

Определение.

Если линейная комбинация может представлять собой нулевой вектор тогда, когда среди чисел есть хотя бы одно, отличное от нуля, то система векторов называется линейно зависимой .

Определение.

Если линейная комбинация представляет собой нулевой вектор только тогда, когда все числа равны нулю, то система векторов называется линейно независимой .

Свойства линейной зависимости и независимости.

На основании данных определений, сформулируем и докажем свойства линейной зависимости и линейной независимости системы векторов .

    Если к линейно зависимой системе векторов добавить несколько векторов, то полученная система будет линейно зависимой.

    Доказательство.

    Так как система векторов линейно зависима, то равенство возможно при наличии хотя бы одного ненулевого числа из чисел . Пусть .

    Добавим к исходной системе векторов еще s векторов , при этом получим систему . Так как и , то линейная комбинация векторов этой системы вида

    представляет собой нулевой вектор, а . Следовательно, полученная система векторов является линейно зависимой.

    Если из линейно независимой системы векторов исключить несколько векторов, то полученная система будет линейно независимой.

    Доказательство.

    Предположим, что полученная система линейно зависима. Добавив к этой системе векторов все отброшенные векторы, мы получим исходную систему векторов. По условию – она линейно независима, а в силу предыдущего свойства линейной зависимости она должна быть линейно зависимой. Мы пришли к противоречию, следовательно, наше предположение неверно.

    Если в системе векторов есть хотя бы один нулевой вектор, то такая система линейно зависимая.

    Доказательство.

    Пусть вектор в этой системе векторов является нулевым. Предположим, что исходная система векторов линейно независима. Тогда векторное равенство возможно только тогда, когда . Однако, если взять любое , отличное от нуля, то равенство все равно будет справедливо, так как . Следовательно, наше предположение неверно, и исходная система векторов линейно зависима.

    Если система векторов линейно зависима, то хотя бы один из ее векторов линейно выражается через остальные. Если система векторов линейно независима, то ни один из векторов не выражается через остальные.

    Доказательство.

    Сначала докажем первое утверждение.

    Пусть система векторов линейно зависима, тогда существует хотя бы одно отличное от нуля число и при этом верно равенство . Это равенство можно разрешить относительно , так как , при этом имеем

    Следовательно, вектор линейно выражается через остальные векторы системы , что и требовалось доказать.

    Теперь докажем второе утверждение.

    Так как система векторов линейно независима, то равенство возможно лишь при .

    Предположим, что какой-нибудь вектор системы выражается линейно через остальные. Пусть этим вектором является , тогда . Это равенство можно переписать как , в его левой части находится линейная комбинация векторов системы, причем коэффициент перед вектором отличен от нуля, что указывает на линейную зависимость исходной системы векторов. Так мы пришли к противоречию, значит, свойство доказано.

Из двух последних свойств следует важное утверждение:
если система векторов содержит векторы и , где – произвольное число, то она линейно зависима.

Исследование системы векторов на линейную зависимость.

Поставим задачу: нам требуется установить линейную зависимость или линейную независимость системы векторов .

Логичный вопрос: «как ее решать?»

Кое-что полезное с практической точки зрения можно вынести из рассмотренных выше определений и свойств линейной зависимости и независимости системы векторов. Эти определения и свойства позволяют нам установить линейную зависимость системы векторов в следующих случаях:

Как же быть в остальных случаях, которых большинство?

Разберемся с этим.

Напомним формулировку теоремы о ранге матрицы, которую мы приводили в статье .

Теорема.

Пусть r – ранг матрицы А порядка p на n , . Пусть М – базисный минор матрицы А . Все строки (все столбцы) матрицы А , которые не участвуют в образовании базисного минора М , линейно выражаются через строки (столбцы) матрицы, порождающие базисный минор М .

А теперь поясним связь теоремы о ранге матрицы с исследованием системы векторов на линейную зависимость.

Составим матрицу A , строками которой будут векторы исследуемой системы :

Что будет означать линейная независимость системы векторов ?

Из четвертого свойства линейной независимости системы векторов мы знаем, что ни один из векторов системы не выражается через остальные. Иными словами, ни одна строка матрицы A не будет линейно выражаться через другие строки, следовательно, линейная независимость системы векторов будет равносильна условию Rank(A)=p .

Что же будет означать линейная зависимость системы векторов ?

Все очень просто: хотя бы одна строка матрицы A будет линейно выражаться через остальные, следовательно, линейная зависимость системы векторов будет равносильна условию Rank(A)

.

Итак, задача исследования системы векторов на линейную зависимость сводится к задаче нахождения ранга матрицы, составленной из векторов этой системы.

Следует заметить, что при p>n система векторов будет линейно зависимой.

Замечание : при составлении матрицы А векторы системы можно брать не в качестве строк, а в качестве столбцов.

Алгоритм исследования системы векторов на линейную зависимость.

Разберем алгоритм на примерах.

Примеры исследования системы векторов на линейную зависимость.

Пример.

Дана система векторов . Исследуйте ее на линейную зависимость.

Решение.

Так как вектор c нулевой, то исходная система векторов линейно зависима в силу третьего свойства.

Ответ:

Система векторов линейно зависима.

Пример.

Исследуйте систему векторов на линейную зависимость.

Решение.

Не сложно заметить, что координаты вектора c равны соответствующим координатам вектора , умноженным на 3 , то есть, . Поэтому, исходная система векторов линейно зависима.

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторов и имеем набор чисел
, тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторов
называется линейно зависимой, если существует такой набор коэффициентов
, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть
, тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов
называется линейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всех
равных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

 Пусть
, тогда .

Получим
, следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию (12) система линейно зависима. 

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть
- линейно зависимая подсистема
, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой. 

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора и линейно зависимы тогда и только тогда, когда
.

Необходимость.

и - линейно зависимы
, что выполняется условие
. Тогда
, т.е.
.

Достаточность.

Линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

- линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

, (13)

где
и
. По правилу параллелограмма есть диагональ параллелограмма со сторонами
, но параллелограмм – плоская фигура
компланарны
- тоже компланарны.

Достаточность .

- компланарны. Приложим три вектора к точке О:

C

B`

– линейно зависимы 

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы
были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точку D, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипед OB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма
.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда)
, тогда

EMBED Equation.3 .

По теореме 1
такие, что . Тогда
, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Выражение вида называется линейной комбинацией векторов A 1 , A 2 ,...,A n с коэффициентами λ 1, λ 2 ,...,λ n .

Определение линейной зависимости системы векторов

Система векторов A 1 , A 2 ,...,A n называется линейно зависимой , если существует ненулевой набор чисел λ 1, λ 2 ,...,λ n , при котором линейная комбинация векторов λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n равна нулевому вектору , то есть система уравнений: имеет ненулевое решение.
Набор чисел λ 1, λ 2 ,...,λ n является ненулевым, если хотя бы одно из чисел λ 1, λ 2 ,...,λ n отлично от нуля.

Определение линейной независимости системы векторов

Система векторов A 1 , A 2 ,...,A n называется линейно независимой , если линейная комбинация этих векторов λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n равна нулевому вектору только при нулевом наборе чисел λ 1, λ 2 ,...,λ n , то есть система уравнений: A 1 x 1 +A 2 x 2 +...+A n x n =Θ имеет единственное нулевое решение.

Пример 29.1

Проверить, является ли линейно зависимой система векторов

Решение :

1. Составляем систему уравнений :

2. Решаем ее методом Гаусса . Преобразования Жордано системы приведены в таблице 29.1. При расчете правые части системы не записываются так как они равны нулю и при преобразованиях Жордана не изменяются.

3. Из последних трех строк таблицы записываем разрешенную систему, равносильную исходной системе:

4. Получаем общее решение системы :

5. Задав по своему усмотрению значение свободной переменной x 3 =1, получаем частное ненулевое решение X=(-3,2,1).

Ответ: Таким образом, при ненулевом наборе чисел (-3,2,1) линейная комбинация векторов равняется нулевому вектору -3A 1 +2A 2 +1A 3 =Θ. Следовательно, система векторов линейно зависимая .

Свойства систем векторов

Свойство (1)
Если система векторов линейно зависимая, то хотя бы один из векторов разлагается по остальным и, наоборот, если хотя бы один из векторов системы разлагается по остальным, то система векторов линейно зависимая.

Свойство (2)
Если какая-либо подсистема векторов линейно зависимая, то и вся система линейно зависимая.

Свойство (3)
Если система векторов линейно независимая, то любая ее подсистема линейно независимая.

Свойство (4)
Любая система векторов, содержащая нулевой вектор, линейно зависимая.

Свойство (5)
Система m-мерных векторов всегда является линейно зависимой, если число векторов n больше их размерности (n>m)

Базис системы векторов

Базисом системы векторов A 1 , A 2 ,..., A n называется такая подсистема B 1 , B 2 ,...,B r (каждый из векторов B 1 ,B 2 ,...,B r является одним из векторов A 1 , A 2 ,..., A n) , которая удовлетворяет следующим условиям:
1. B 1 ,B 2 ,...,B r линейно независимая система векторов;
2. любой вектор A j системы A 1 , A 2 ,..., A n линейно выражается через векторы B 1 ,B 2 ,...,B r

r — число векторов входящих в базис.

Теорема 29.1 О единичном базисе системы векторов.

Если система m-мерных векторов содержит m различных единичных векторов E 1 E 2 ,..., E m , то они образуют базис системы.

Алгоритм нахождения базиса системы векторов

Для того, чтобы найти базис системы векторов A 1 ,A 2 ,...,A n необходимо:

  • Составить соответствующую системе векторов однородную систему уравнений A 1 x 1 +A 2 x 2 +...+A n x n =Θ
  • Привести эту систему
Похожие публикации