Построить график функции sinx. Функции у = sin х, у = cos x, их свойства и графики — Гипермаркет знаний

>>Математика: Функции у = sin х, у = cos x, их свойства и графики

Функции у = sin х, у = cos x, их свойства и графики

В этом параграфе мы обсудим некоторые свойства функций у = sin х,у = соs х и построим их графики.

1. Функция у = sin X.

Выше, в § 20, мы сформулировали правило, позволяющее каждому числу t поставить в соответствие число cos t, т.е. охарактеризовали функцию y = sin t. Отметим некоторые ее свойства.

Свойства функции u = sin t.

Область определения - множество К действительных чисел.
Это следует из того, что любому числу 2 соответствует на числовой окружности точка М(1), которая имеет вполне определенную ординату; эта ордината и есть cos t.

u = sin t - нечетная функция.

Это следует из того, что, как было доказано в § 19, для любого t выполняется равенство
Значит, график функции и = sin t, как график любой нечетной функции, симметричен относительно начала координат в прямоугольной системе координат tOи.

Функция u = sin t возрастает на отрезке
Это следует из того, что при движении точки по первой четверти числовой окружности ордината постепенно увеличивается (от 0 до 1 - см. рис. 115), а при движении точки по второй четверти числовой окружности ордината постепенно уменьшается (от 1 до 0 - см. рис. 116).


Функция u = sin t ограничена и снизу, и сверху. Это следует из того, что, как мы видели в § 19, для любого t справедливо неравенство

(этого значения функция достигает в любои точке вида (этого значения функция достигает в любой точке вида
Воспользовавшись полученными свойствами, построим график интересующей нас функции. Но (внимание!) вместо u - sin t будем писать у = sin x (ведь нам привычнее запись у = f(х), а не u = f(t)). Значит, и строить график будем в привычной системе координат хОу (а не tOy).

Составим таблицу значений функции у - sin х:


Замечание.

Приведем одну из версий происхождения термина «синус». По-латыни sinus означает изгиб (тетива лука).

Построенный график в какой-то степени оправдывает эту терминологию.

Линию, служащую графиком функции у = sin х, называют синусоидой. Ту часть синусоиды, которая изображена на рис. 118 или 119, называют волной синусоиды, а ту часть синусоиды, которая изображена на рис. 117, называют полуволной или аркой синусоиды.

2. Функция у = соs х.

Изучение функции у = соs х можно было бы провести примерно по той же схеме, которая была использована выше для функции у = sin х. Но мы выберем путь, быстрее приводящий к цели. Сначала докажем две формулы , важные сами по себе (в этом вы убедитесь в старших классах), но пока имеющие для наших целей лишь вспомогательное значение.

Для любого значения t справедливы равенства


Доказательство . Пусть числу t соответствует точка М числовой n окружности, а числу * + - -точка Р (рис. 124; ради простоты мы взяли точку М в первой четверти). Дуги АМ и ВР равны, соответственно равны и прямоугольные треугольники ОКМ и ОЬР. Значит, О К = ОЬ, МК = РЬ. Из этих равенств и из расположения треугольников ОКМ и ОЬР в системе координат делаем два вывода:

1) ордината точки Р и по модулю и по знаку совпадает с абсциссой точки М; это значит, что

2) абсцисса точки Р по модулю равна ординате точки М, но отличается от нее знаком; это значит, что


Примерно так же проводятся соответствующие рассуждения в тех случаях, когда точка М принадлежит не первой четверти.
Воспользуемся формулой (это - формула, доказанная выше, только вместо переменной t мы используем переменную х). Что дает нам эта формула? Она позволяет утверждать, что функции

тождественны, значит, их графики совпадают.
Построим график функции Для этого перейдем к вспомогательной системе координат с началом в точке (пунктирная прямая проведена на рис. 125). Привяжем функцию у = sin х к новой системе координат - это и будет график функции (рис. 125), т.е. график функции у - соs х. Его, как и график функции у = sin х, называют синусоидой (что вполне естественно).

Свойства функции у = соs х.

у = соs х - четная функция.


Этапы построения отражены на рис. 126:

1) строим график функции у = соs х (точнее, одну полуволну);
2) растянув построенный график от оси х с коэффициентом 0,5, получим одну полуволну требуемого графика;
3) с помощью полученной полуволны строим весь график функции у = 0,5 соs х.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки



|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Синус (sin α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.
Косинус (cos α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x


График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

Функция y = sin x

Графиком функции является синусоида.

Полную неповторяющуюся часть синусоиды называют волной синусоиды.

Половину волны синусоиды называют полуволной синусоиды (или аркой).


Свойства функции
y = sin x :

3) Это нечетная функция.

4) Это непрерывная функция.


- с осью абсцисс: (πn; 0),
- с осью ординат: (0; 0).

6) На отрезке [-π/2; π/2] функция возрастает, на отрезке [π/2; 3π/2] – убывает.

7) На промежутках функция принимает положительные значения.
На промежутках [-π + 2πn; 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания функции: [-π/2 + 2πn; π/2 + 2πn].
Промежутки убывания функции: [π/2 + 2πn; 3π/2 + 2πn].

9) Точки минимума функции: -π/2 + 2πn.
Точки максимума функции: π/2 + 2πn


наибольшее значение 1.

Для построения графика функции y = sin x удобно применять следующие масштабы:

На листе в клетку за единицу отрезка примем длину в две клетки.

На оси x отмерим длину π. При этом для удобства 3,14 представим в виде 3 – то есть без дроби. Тогда на листе в клетку π составит 6 клеток (трижды по 2 клетки). А каждая клетка получит свое закономерное имя (от первой до шестой): π/6, π/3, π/2, 2π/3, 5π/6, π. Это значения x .

На оси y отметим 1, включающий две клетки.

Составим таблицу значений функции, применяя наши значения x :

√3
-
2

√3
-
2

Далее составим график. Получится полуволна, наивысшая точка которой (π/2; 1). Это график функции y = sin x на отрезке . Добавим к построенному графику симметричную полуволну (симметричную относительно начала координат, то есть на отрезке -π). Гребень этой полуволны – под осью x с координатами (-1; -1). В результате получится волна. Это график функции y = sin x на отрезке [-π; π].

Можно продолжить волну, построив ее и на отрезке [π; 3π], [π; 5π], [π; 7π] и т.д. На всех этих отрезках график функции будет выглядеть так же, как на отрезке [-π; π]. Получится непрерывная волнистая линия с одинаковыми волнами.

Функция y = cos x .

Графиком функции является синусоида (ее иногда называют косинусоидой).



Свойства функции y = cos x :

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это четная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
- с осью абсцисс: (π/2 + πn; 0),
- с осью ординат: (0;1).

6) На отрезке функция убывает, на отрезке [π; 2π] – возрастает.

7) На промежутках [-π/2 + 2πn; π/2 + 2πn] функция принимает положительные значения.
На промежутках [π/2 + 2πn; 3π/2 + 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания: [-π + 2πn; 2πn].
Промежутки убывания: ;

9) Точки минимума функции: π + 2πn.
Точки максимума функции: 2πn.

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

Функция y = mf (x ).

Возьмем предыдущую функцию y = cos x . Как вы уже знаете, ее графиком является синусоида. Если мы умножим косинус этой функции на определенное число m, то волна растянется от оси x (либо сожмется, в зависимости от величины m).
Эта новая волна и будет графиком функции y = mf(x), где m – любое действительное число.

Таким образом, функция y = mf(x) – это привычная нам функция y = f(x), умноженная на m.

Если m < 1, то синусоида сжимается к оси x на коэффициент m. Если m > 1, то синусоида растягивается от оси x на коэффициент m.

Выполняя растяжение или сжатие, можно сначала построить лишь одну полуволну синусоиды, а затем уже достроить весь график.

Функция y = f (kx ).

Если функция y = mf (x ) приводит к растяжению синусоиды от оси x либо сжатию к оси x , то функция y = f(kx) приводит к растяжению от оси y либо сжатию к оси y .

Причем k – любое действительное число.

При 0 < k < 1 синусоида растягивается от оси y на коэффициент k. Если k > 1, то синусоида сжимается к оси y на коэффициент k.

Составляя график этой функции, можно сначала построить одну полуволну синусоиды, а по ней достроить затем весь график.

Функция y = tg x .

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2.


Свойства функции y = tg x :

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида (ее иногда называют котангенсоидой).



Свойства функции y = ctg x :

Урок и презентация на тему: "Функция y=sin(x). Определения и свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:

  • Свойства функции Y=sin(X).
  • График функции.
  • Как строить график и его масштаб.
  • Примеры.

Свойства синуса. Y=sin(X)

Ребята, мы уже познакомились с тригонометрическими функциями числового аргумента. Вы помните их?

Давайте познакомимся поближе с функцией Y=sin(X)

Запишем некоторые свойства этой функции:
1) Область определения – множество действительных чисел.
2) Функция нечетная. Давайте вспомним определение нечетной функции. Функция называется нечетной если выполняется равенство: y(-x)=-y(x). Как мы помним из формул привидения: sin(-x)=-sin(x). Определение выполнилось, значит Y=sin(X) – нечетная функция.
3) Функция Y=sin(X) возрастает на отрезке и убывает на отрезке [π/2; π]. Когда мы движемся по первой четверти (против часовой стрелки), ордината увеличивается, а при движении по второй четверти она уменьшается.

4) Функция Y=sin(X) ограничена снизу и сверху. Данное свойство следует из того, что
-1 ≤ sin(X) ≤ 1
5) Наименьшее значение функции равно -1 (при х = - π/2+ πk). Наибольшее значение функции равно 1 (при х = π/2+ πk).

Давайте, воспользовавшись свойствами 1-5, построим график функции Y=sin(X). Будем строить наш график последовательно, применяя наши свойства. Начнем строить график на отрезке .

Особое внимание стоит обратить на масштаб. На оси ординат удобнее принять единичный отрезок равный 2 клеточкам, а на оси абсцисс - единичный отрезок (две клеточки) принять равным π/3 (смотрите рисунок).


Построение графика функции синус х, y=sin(x)

Посчитаем значения функции на нашем отрезке:



Построим график по нашим точкам, с учетом третьего свойства.

Таблица преобразований для формул привидения

Воспользуемся вторым свойством, которое говорит, что наша функция нечетная, а это значит, что ее можно отразить симметрично относительно начало координат:


Мы знаем, что sin(x+ 2π) = sin(x). Это значит, что на отрезке [- π; π] график выглядит так же, как на отрезке [π; 3π] или или [-3π; - π] и так далее. Нам остается аккуратно перерисовать график на предыдущем рисунке на всю ось абсцисс.



График функции Y=sin(X) называют - синусоидой.


Напишем еще несколько свойств согласно построенному графику:
6) Функция Y=sin(X) возрастает на любом отрезке вида: [- π/2+ 2πk; π/2+ 2πk], k – целое число и убывает на любом отрезке вида: [π/2+ 2πk; 3π/2+ 2πk], k – целое число.
7) Функция Y=sin(X) – непрерывная функция. Посмотрим на график функции и убедимся что у нашей функции нет разрывов, это и означает непрерывность.
8) Область значений: отрезок [- 1; 1]. Это также хорошо видно из графика функции.
9) Функция Y=sin(X) - периодическая функция. Посмотрим опять на график и увидим, что функция принимает одни и те же значения, через некоторые промежутки.

Примеры задач с синусом

1. Решить уравнение sin(x)= x-π

Решение: Построим 2 графика функции: y=sin(x) и y=x-π (см. рисунок).
Наши графики пересекаются в одной точке А(π;0), это и есть ответ: x = π




2. Построить график функции y=sin(π/6+x)-1

Решение: Искомый график получится путем переноса графика функции y=sin(x) на π/6 единиц влево и 1 единицу вниз.




Решение: Построим график функции и рассмотрим наш отрезок [π/2; 5π/4].
На графике функции видно, что наибольшие и наименьшие значения достигаются на концах отрезка, в точках π/2 и 5π/4 соответственно.
Ответ: sin(π/2) = 1 – наибольшее значение, sin(5π/4) = наименьшее значение.



Задачи на синус для самостоятельного решения


  • Решите уравнение: sin(x)= x+3π, sin(x)= x-5π
  • Построить график функции y=sin(π/3+x)-2
  • Построить график функции y=sin(-2π/3+x)+1
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке [- π/3; 5π/6]

Х y O Единичная тригонометрическая окружность


3 =180 3,14 рад R R О Р М R Рассмотрим окружность радиуса R. Построим MOP: МР = R 1 радиан Величина МОР равна 1 радиан МР =1рад МОР 57 17= 1рад Радианная мера угла


4 Длина окружности выражается формулой C=2 R, где R – радиус окружности. 3, Окружность, радиус которой равен 1, называется … Точки М,Р,К,N – назовем узловыми. Отметим точки А,В,С. Длину единичной окружности удобно измерять в радианах. Если R=1, то С=2 рад! Наименование радиан обычно опускают. y х К Р С В А Длина дуги половины окружности равна рад. М N рад – четверть длины окружности рад – три четверти длины окружности О 1 единичной Радианная мера угла uk-badge uk-margin-small-right"> 5 Градусная мера Радианная мера0 Итак, величину угла поворота точки, а также величину дуги единичной окружности, можно задавать: I четверть II четверть III четверть IV четверть О в градусной мере в радианной мере Радианная мера угла 0 2 I четверть II четверть III четверть IV четверть О 2


6 «Размотаем» окружность как нить на координатный луч с началом в точке 0 Установим соответствие между множеством действительных чисел на числовой прямой и точками единичной окружности. Такое «разматывание» можно продолжать бесконечно. 3,14 0 Построение графика х y=sin x














13 Преобразование графиков Функция Преобразование 1 y= f (x) + mПараллельный перенос вдоль оси OY на m единиц 2 y= f (x – n)Параллельный перенос вдоль оси OX на n единиц 3 y=А f (x) Растяжение вдоль оси OY относительно оси OX в А раз 4 y= f (k x)Сжатие вдоль оси OX относительно оси OY в k раз 5 y= – f (x) Симметричное отражение относительно оси OX 6 y= f (– x) Симметричное отражение относительно оси OY y = f (x)














20 Построим график функции y= 3 sin(2x+ /3)–2 Этапы построения: 1. y= sin x – синусоида 3. y= sin(2x+ /3) – перенос на /3 единиц влево 4. y= 3 sin(2x+ /3) – растяжение в 3 раза вдоль оси Oy 2. y= sin 2x – сжатие в 2 раза вдоль оси Ох 5. y= 3 sin(2x+ /3)–2 – перенос на 2 единицы вниз





26 Преобразование графиков Функция Преобразование 1 y=sin(kx)Сжатие вдоль оси OX относительно оси OY в k раз 2 y=sin(x–m)Параллельный перенос вдоль оси OX на m единиц 3 y=А sin x Растяжение вдоль оси OY относительно оси OX в А раз 4 y=sin x+nПараллельный перенос вдоль оси OY на n единиц 5 y= – sin x Симметричное отражение относительно оси OX 6 y= sin (–x) Симметричное отражение относительно оси OY y = Asin(kx–n)+m
28 1.Функция y=sin x существует при всех действительных значениях x, причем, график ее является сплошной линией (без разрывов), т.е. функция непрерывна. 2.Функция y=sin x нечетная, ее график симметричен относительно начала координат 3.Наибольшие и наименьшие значения. Все возможные значения функции sinx ограничены неравенством -1 sinx 1, причем 4. Нули функции (точки пересечения графика функции с осью абсцисс): sinx=0, если x= n. (n Z) Некоторые свойства функции y=sinx sin x= – 1, если sin x=1, если

Похожие публикации