Биогенетический закон относится к доказательствам эволюции. Соотношение онто-филогенеза

Биогенетический закон был сформулирован Э.Геккелем: "Онтогенез есть быстрое и краткое повторение филогенеза (исторического развития вида)". Геккель утверждал, что филогенез есть причина онтогенеза: идивидуальное развитие полностью обусловлено историей развития вида. В дальнейшем эти взгляды были частично отвергнуты наукой, а частично видоизменены и дополнены.

Немецкие ученые Ф. Мюллер и Э. Геккель во второй половине XIX в. установили закон соотношения онтогенеза и филогенеза, который получил название биогенетического закона. Согласно этому закону, каждая особь в индивидуальном развитии ( онтогенезе) повторяет историю развития своего вида ( филогенез), или, короче, онтогенез есть повторение филогенеза.

Однако за короткий период индивидуального развития особь не может повторить все этапы эволюции, которая совершалась тысячи или миллионы лет. Поэтому повторение стадий исторического развития вида в индивидуальном развитии особи происходит в сжатой форме, с выпадением ряда этапов. Кроме того, эмбрионы имеют сходство не со взрослыми формами предков, а с их зародышами. Так, в онтогенезе млекопитающих имеется этап, на котором у зародышей образуются жаберные дуги. У зародыша рыбы на основании этих дуг образуется орган дыхания - жаберный аппарат. В онтогенезе млекопитающих повторяется не строение жаберного аппарата взрослых рыб, а строение закладок жаберного аппарата зародыша, на основе которых у млекопитающих развиваются совершенно иные органы.

В разработке теории онтогенеза выдающуюся роль сыграли исследования академика А.Н. Северцова. Он доказал, что изменения исторического развития обусловлены изменениями хода зародышевого развития. Наследственные изменения затрагивают все стадии жизненного цикла, в том числе и зародышевый период. Мутации, возникающие в ходе развития зародыша, как правило, нарушают взаимодействие в организме и ведут к его гибели. Однако мелкие мутации могут оказаться полезными и тогда сохранятся естественным отбором. Они передадутся потомству, включатся в историческое развитие, влияя на его ход.

Обычно эмбриональные стадии развития изменяются в процессе эволюции не так значительно, как взрослые животные. Поэтому при сравнении эмбрионов и личинок даже далеких друг от друга животных между ними нередко обнаруживается большое сходство, свидетельствующее о родстве.

Особенный интерес для эволюционной зоологии представляют рекапитуляции, т.е. повторения в ходе индивидуального развития характерных особенностей строения более или менее отдаленных предков. Приведем лишь один классический пример. Систематическое положение и происхождение асцидий (Ascidiae), ведущих сидячий образ жизни, долгое время были совершенно неясны, и только знаменитое исследование А. О. Ковалевского (1866) по развитию этих животных окончательно решило вопрос. Из яйца асцидий выходит свободноплавающая хвостатая личинка, сходная по плану строения с хордовыми (Chordata). Во время метаморфоза осевшей на дно личинки хвост с хордой и мускулатурой и органы чувств исчезают, нервная трубка редуцируется до степени небольшого нервного узелка, происходит усиленное разрастание брюшной поверхности тела, образуются сифоны и т.д., т.е. появляются особенности организации, связанные с сидячим образом жизни. Сформированная молодая асцидия не имеет уже почти ничего общего с другими хордовыми животными. В этом примере личинка своей организацией рекапитулирует (повторяет) главные черты строения свободноплавающего предка. Так было найдено естественное место асцидий в системе животного царства.

  • 4. Идеи преформизма и эпигенеза в биологии.
  • 5. Трансформизм как этап в истории биологии.
  • 6. Эволюционное учение ж.Б.Ламарка.
  • 7. Основные предпосылки возникновения теории ч. Дарвина.
  • 8. Значение кругосветного путешествия ч.Дарвина на развитие эволюционной теории.
  • 9. Дарвин о формах, закономерностях и причинах изменчивости.
  • 10. Основные этапы возникновения человека.
  • 11. Учение ч. Дарвина о борьбе за существование и естественном отборе как переживании наиболее приспособленных.
  • 12. Половой отбор как особая форма отбора по Дарвину.
  • 13. Происхождение органической целесообразности и ее относительность.
  • 14. Мутации как основной материал для эволюционного процесса.
  • 15. Формы естественного отбора.
  • 16. История развития понятия «вид».
  • 17. Основные признаки вида.
  • 18. Критерии вида.
  • 19. Внутривидовые отношения как форма борьбы за существование и как фактор естественного отбора.
  • 20. Ранние этапы развития (происхождение) жизни на Земле.
  • 21. Аллопатрическое видообразование.
  • 22. Теория симпатрического образования новых видов.
  • 23. Биогенетический закон ф. Мюллера - э. Геккеля. Теория филэмбриогенеза.
  • 24. Основные этапы филогенеза растений.
  • 25. Темпы эволюции.
  • 26. Основные этапы филогенеза животных.
  • 27. Выход растений и животных на сушу в палеозое и связанные с этим ароморфозы.
  • 28. Развитие жизни в мезозойскую эру. Основные ароморфозы, связанные с появлением покрытосеменных растений, птиц и млекопитающих.
  • 29. Развитие жизни в кайнозойскую эру.
  • 30. Роль биологических и социальных факторов в антропогенезе.
  • 31. Человек как политипический вид и возможности его дальнейшей эволюции.
  • 32. Изоляция как один из важнейших факторов эволюции.
  • 33. Формо- и видообразование.
  • 34. Необратимость эволюционного процесса.
  • 35. Проблема эволюционных тупиков и вымирание.
  • 36. Вклад отечественных ученых в развитие дарвинизма.
  • 37. Загрязнение окружающей среды и проблема охраны природы с точки зрения теории эволюции.
  • 38. Основные пути адаптациогенеза.
  • 39. Модификационная изменчивость и ее адаптивное значение.
  • 40. Волны жизни и их роль в эволюции.
  • 41. Структура вида.
  • 42. Прогресс и регресс в эволюции.
  • 23. Биогенетический закон ф. Мюллера - э. Геккеля. Теория филэмбриогенеза.

    Биогенет и ческий зак о н, закономерность в живой природе, сформулированная немецким учёным Э. Геккелем (1866) и состоящая в том, что индивидуальное развитие особи (онтогенез ) является коротким и быстрым повторением (рекапитуляцией ) важнейших этапов эволюции вида (филогенеза ). Факты, свидетельствующие о рекапитуляции (например, закладка у зародышей наземных позвоночных жаберных щелей), были известны ещё до появления эволюционного учения Ч. Дарвина. Однако лишь Дарвин дал (1859) этим фактам последовательное естественно-историческое объяснение, установив, что стадии развития зародышей воспроизводят древние предковые формы. Он рассматривал рекапитуляцию как фундаментальную закономерность эволюции органического мира. Теория естественного отбора позволила Дарвину объяснить противоречивое сочетание целесообразности строения организмов с рекапитуляцией признаков далёких предков. Немецкий эмбриолог Ф. Мюллер в 1864 подкрепил принцип рекапитуляции данными из истории развития ракообразных. Двумя годами позже Геккель придал принципу рекапитуляции форму Б. з., схематизировав при этом дарвиновские представления. Б. з. сыграл важную роль в биологии, стимулировал эволюционные исследования в эмбриологии, сравнительной анатомии и палеонтологии.

    Вокруг Б. з. развернулась продолжительная и острая дискуссия. Противники Б. з. пытались истолковать Б. з. в духе механицизма, витализма или безоговорочно его отвергали. Отстаивая Б. з., дарвинисты стремились углубить его содержание и освободить от схематичности. Они критиковали представления Геккеля, ошибочно разделявшего явления эмбрионального развития на 2 неравноценные группы: палингенезы , отражающие историю вида, и ценогенезы , возникшие в качестве приспособления зародышей к условиям среды и затемняющие, «фальсифицирующие», палингенезы. Несостоятельным оказалось и первоначальное представление Геккеля о прямом порядке воспроизведения в развитии особи этапов истории вида. Было показано (в т. ч. и самим Геккелем), что гетерохронии , гетеротопии , эмбриональные приспособления, редукция и другие процессы глубоко изменяют течение онтогенеза, исключая возможность прямой рекапитуляции признаков предков. Новое освещение Б. з. получил в теории филэмбриогенеза русского биолога А. Н. Северцова. Явление рекапитуляции Северцов рассматривает под углом зрения закономерностей эволюции онтогенеза. Б. з. расценивается им как следствие эволюции, осуществляющейся путём надставки (анаболии ) конечных стадий онтогенеза; ценогенезы же являются закономерным путём эволюции вида и имеют палингенетическую природу. Вопреки мнению, будто Б. з. неприложим к растениям, ряд ботаников приводил примеры рекапитуляции у растений. Обстоятельный анализ Б. з. с ботанической точки зрения был проведён советским учёным Б. М. Козо-Полянским (1937); им предложена формулировка закона рекапитуляции с учётом своеобразия онтогенеза и индивидуальности растений. Дальнейший прогресс представлений о рекапитуляции, подтвердивший ограниченность геккелевской трактовки Б. з., связан с успехами эволюционной морфологии, экспериментальной эмбриологии и генетики, которые обобщены в учении И. И. Шмальгаузена об организме как целом в индивидуальном и историческом развитии.

    Наблюдение двух независимых биологов за онтогенезом организмов позволило сформировать биогенетический закон Геккеля-Мюллера. Впервые формулировка прозвучала в 1866 году. Однако предпосылки становления закона были выявлены ещё в 1820-х годах.

    Закон и его значение

    Суть закона заключается в том, что в процессе онтогенеза (индивидуального развития организма) особь повторяет формы своих предков и от зачатия до становления проходит стадии филогенеза (исторического развития организмов).

    Формулировка зоолога Фрица Мюллера была дана в книге «За Дарвина» в 1864 году. Мюллер писал, что историческое развитие вида отражается в истории индивидуального развития.

    Через два года естествоиспытатель Эрнст Геккель сформулировал закон более кратко: онтогенез - быстрое повторение филогенеза. Другими словами, каждый организм проходит эволюционное изменение вида в процессе развития.

    Рис. 1. Геккель и Мюллер.

    Свои выводы учёные сделали при изучении эмбрионов разных видов на основе ряда схожих признаков. Например, у зародышей млекопитающих и рыб формируются жаберные дуги. Эмбрионы амфибий, рептилий и млекопитающих проходят одинаковые стадии развития и внешне похожи. Схожесть эмбрионов является одним из доказательств теории эволюции и происхождения животных от одного предка.

    ТОП-4 статьи которые читают вместе с этой

    Рис. 2. Сравнение зародышей разных животных.

    Основатель эмбриологии Карл Бэр ещё в 1828 году выявил сходство зародышей разных видов. Он писал о том, что зародыши идентичны и лишь на определённой стадии эмбриологического развития проявляются признаки рода и вида. Любопытно, что, несмотря на свои наблюдения, Бэр так и не принял теорию эволюции.

    Критика

    С XIX века выводы Геккеля и Мюллера подвергались критике.
    Были выявлены несовершенства основного биогенетического закона:

    • особь не повторяет все этапы эволюции и проходит стадии исторического развития в сжатой форме;
    • сходство наблюдается не у эмбрионов и взрослых особей, а у двух разных эмбрионов на определённом этапе развития (жабры млекопитающих схожи с жабрами зародышей рыб, а не взрослых особей);
    • неотения - явление, при котором взрослая стадия напоминает личиночное развитие предполагаемого предка (сохранение на протяжении всей жизни младенческих свойств);
    • педогенез - вид партеногенеза, при котором размножение происходит на стадии личинки;
    • значительные различия на стадиях бластулы и гаструлы у позвоночных, сходство наблюдается на более поздних стадиях.

    Установлено, что закон Геккеля-Мюллера никогда не выполняется полностью, всегда находятся отклонения и исключения. Некоторые эмбриологии отмечали, что биогенетический закон - всего лишь иллюзия, не имеющая под собой серьёзных предпосылок.

    Закон пересмотрел биолог Алексей Северцов. На основе биогенетического закона он разработал теорию филэмбриогенеза. Согласно гипотезе изменения исторического развития обуславливаются изменениями на личиночной или эмбриональной стадии развития, т.е. онтогенез изменяет филогенез.

    Северцов разделил признаки эмбрионов на ценогенезы (приспособления к личиночному или эмбриональному образу жизни) и филэмбриогенезы (изменения эмбрионов, которые приводят к видоизменению взрослых особей).

    К ценогенезу Северцов относил:

    • зародышевые оболочки;
    • плаценту;
    • яйцевой зуб;
    • жабры личинок земноводных;
    • органы прикрепления у личинок.

    Рис. 3. Яйцевой зуб - пример ценогенеза.

    Ценогенез «облегчил» жизнь личинок и эмбрионов в ходе эволюции. Поэтому сложно проследить развитие филогенеза по эмбриологическому развитию.

    Филэмбриогенез делится на три вида:

    • архаллаксис - изменения на первых стадиях онтогенеза, при котором дальнейшее развитие организма идёт по новому пути;
    • анаболия - увеличение онтогенеза путём возникновения дополнительных стадий эмбрионального развития;
    • девиация - изменения на средних стадиях развития.

    Что мы узнали?

    Из урока биологии 9 класса узнали о законе Геккеля-Мюллера, согласно которому каждая особь в ходе онтогенеза проходит стадии филогенеза. Закон не работает в «чистом» виде и имеет массу допущений. Биолог Северцов разработал более полную теорию индивидуального развития.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.2 . Всего получено оценок: 67.

    Онтогенез – реализация генетической информации, происходящая на всех стадиях.

    Онтогенез – генетически контролируемый процесс. В ходе онтогенеза реализуется генотип и формируется фенотип.

    Онтогенез - индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. О. включает рост , т. е. увеличение массы тела, его размеров, дифференцировку . Термин "О." введён Э. Геккелем (1866) при формулировании им биогенетического закона .

    Первую попытку исторического обоснования О. сделал И. ф. Меккель . Проблема соотношения О. и филогенеза была поставлена Ч. Дарвином и разрабатывалась Ф. Мюллером ,Э. Геккелем и др. Все связанные с изменением наследственности, новые в эволюционном отношении признаки возникают в О., но лишь те из них, которые способствуют лучшему приспособлению организма к условиям существования, сохраняются в процессе естественного отбора и передаются последующим поколениям, т. е. закрепляются в эволюции. Познание закономерностей, причин и факторов О. служит научной основой для отыскания средств влияния на развитие растений, животных и человека, что имеет важнейшее значение для практики растениеводства и животноводства, а также для медицины.

    Филогенез - историческое развитие организмов. Термин введён нем. эволюционистом Э. Геккелем в 1866. Основной задачей при изучении Ф. является реконструкция эволюционных преобразований животных, растений, микроорганизмов, установление на этой основе их происхождения и родственных связей между таксонами, к которым относятся изученные организмы. Для этой цели Э. Геккель разработал метод "тройного параллелизма", позволяющий путём сопоставления данных трёх наук – морфологии, эмбриологии и палеонтологии – восстановить ход исторического развития изучаемой систематической группы.

    Закон зародышевого сходства

    Исследователи начала XIXв. впервые стали обращать внимание на сходство стадий развития эмбрионов высших животных со ступенями усложнения организации, ведущими от низкоорганизованных форм к прогрессивным. Сопоставляя стадии развития зародышей разных видов и классов хордовых, К. Бэр сделал следующие выводы.

    1.Эмбрионы животных одного типа на ранних стадиях развития сходны.

    2.Они последовательно переходят в своем развитии от более общих признаков типа ко все более частным. В последнюю очередь развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, индивидуальные черты.

    3.Эмбрионы разных представителей одного типа постепенно обособляются друг от друга.

    К. Бэр, не будучи эволюционистом, не мог связывать открытые им закономерности индивидуального развития с процессом филогенеза. Поэтому сделанные им обобщения имели значение не более чем эмпирических правил.

    Развитие эволюционной идеи в последующем позволило объяснить сходство ранних зародышей их историческим родством, а приобретение ими все более частных черт с постепенным обособлением друг от друга -действительным обособлением соответствующих классов, отрядов, семейств, родов и видов в процессе эволюции.

    Вскоре после открытия закона зародышевого сходства Ч. Дарвин показал, что этот закон свидетельствует об общности происхождения и единства начальных этапов эволюции в пределах типа.

    Биогенетический закон Геккеля-Мюллера: каждое живое существо в своем индивидуальном развитии (онтогенез ) повторяет в известной степени формы, пройденного его предками или его видом (филогенез ).

    Онтогенез - повторение филогенеза

    Сопоставляя онтогенез ракообразных с морфологией их вымерших предков, Ф. Мюллер сделал вывод о том, что ныне живущие ракообразные в своем развитии повторяют путь, пройденный их предками. Преобразование онтогенеза в эволюции, по мнению Ф. Мюллера, осуществляется благодаря его удлинению за счет добавления к нему дополнительных стадий или надставок. На основе этих наблюдений, а также изучения развития хордовых Э. Геккель (1866)сформулировал основной биогенетический закон, в соответствии с которымонтогенез представляет собой краткое и быстрое повторение филогенеза.

    Повторение структур, характерных для предков, в эмбриогенезе потомков названо рекапитуляциями. Рекапитулируют не только морфологические признаки -хорда, закладки жаберных щелей и жаберных дуг у всех хордовых, но и особенности биохимической организации и физиологии. Так, в эволюции позвоночных происходит постепенная утрата ферментов, необходимых для распада мочевой кислоты -продукта метаболизма пуринов. У большинства беспозвоночных конечный продукт распада мочевой кислоты -аммиак, у земноводных и рыб - мочевина, у многих пресмыкающихся -аллантоин, а у некоторых млекопитающих мочевая кислота вообще не расщепляется и выделяется с мочой. В эмбриогенезе млекопитающих и человека отмечены биохимические и физиологические рекапитуляции: выделение ранними зародышами аммиака, позже мочевины, затем аллантоина, а на последних стадиях развития -мочевой кислоты.

    Однако в онтогенезе высокоорганизованных организмов не всегда наблюдается строгое повторение стадий исторического развития, как это следует из биогенетического закона. Так, зародыш человека никогда не повторяет взрослых стадий рыб, земноводных, пресмыкающихся и млекопитающих, а сходен по ряду черт лишь с их зародышами. Ранние стадии развития сохраняют наибольшую консервативность, благодаря чему рекапитулируют более полно, чем поздние. Это связано с тем, что одним из наиболее важных механизмов интеграции ранних этапов эмбриогенеза является эмбриональная индукция, а структуры зародыша, формирующиеся в первую очередь, такие, как хорда, нервная трубка, глотка, кишка и сомиты, представляют собой организационные центры зародыша, от которых зависит весь ход развития.

    Генетическая основа рекапитуляции заключена в единстве механизмов генетического контроля развития, сохраняющемся на базе общих генов регуляции онтогенеза, которые достаются родственным группам организмов от общих предков.

    Рекапитуляция (от лат. recapitulatio – повторение) - понятие, используемое в биологии для обозначения повторения в индивидуальном развитии признаков, свойственных более ранней стадии эволюционного развития.

    Онтогенез как основа филогенеза. Ценогенезы. Автономизация онтогенеза. Филэмбриогенезы. Учение А.Н.Северцова о филэмбриогенезах. Механизмы их возникновения. Гетерохронии и гетеротопии биологических структур в эволюции онтогенеза.

    Опираясь только на основной биогенетический закон, невозможно объяснить процесс эволюции: бесконечное повторение пройденного само по себе не рождает нового. Так как жизнь существует на Земле благодаря смене поколений конкретных организмов, эволюция ее протекает благодаря изменениям, происходящим в их онтогенезах. Эти изменения сводятся к тому, что конкретные онтогенезы отклоняются от пути, проложенного предковыми формами, и приобретают новые черты.

    К таким отклонениям относятся, например, ценогенезы - приспособления, возникающие у зародышей или личинок и адаптирующие их к особенностям среды обитания. У взрослых организмов ценогенезы не сохраняются. Примерами ценогенезов являются роговые образования во рту личинок бесхвостых земноводных, облегчающие им питание растительной пищей. В процессе метаморфоза у лягушонка они исчезают и пищеварительная система перестраивается для питания насекомыми и червями. К ценогенезам у амниот относят зародышевые оболочки, желточный мешок и аллантоис, а у плацентарных млекопитающих и человека -еще и плаценту с пуповиной.

    Ценогенезы, проявляясь только на ранних стадиях онтогенеза, не изменяют типа организации взрослого организма, но обеспечивают более высокую вероятность выживания потомства. Они могут сопровождаться при этом уменьшением плодовитости и удлинением зародышевого или личиночного периода, благодаря чему организм в постэмбриональном или постличиночном периоде развития оказывается более зрелым и активным. Возникнув и оказавшись полезными, ценогенезы будут воспроизводиться в последующих поколениях. Так, амнион, появившийся впервые у предков пресмыкающихся в каменноугольном периоде палеозойской эры, воспроизводится у всех позвоночных, развивающихся на суше, как у яйцекладущих - пресмыкающихся и птиц, так и у плацентарных млекопитающих.

    Другой тип филогенетически значимых преобразований филогенеза -филэмбриогенезы. Они представляют собой отклонения от онтогенеза, характерного для предков, проявляющиеся в эмбриогенезе, но имеющие адаптивное значение у взрослых форм. Так, закладки волосяного покрова появляются у млекопитающих на очень ранних стадиях эмбрионального развития, но сам волосяной покров имеет значение только у взрослых организмов.

    Такие изменения онтогенеза, будучи полезными, закрепляются естественным отбором и воспроизводятся в последующих поколениях. В основе этих изменений лежат те же механизмы, которые обусловливают врожденные пороки развития: нарушение пролиферации клеток, их перемещения, адгезии, гибели или дифференцировки (см. § 8.2и9.3).Однако от пороков их так же, как и ценогенезы, отличает адаптивная ценность, т.е. полезность и закрепленность естественным отбором в филогенезе.

    В зависимости от того, на каких этапах эмбриогенеза и морфогенеза конкретных структур возникают изменения развития, имеющие значение филэмбриогенезов, различают три их типа.

    1.Анаболии, или надставки, возникают после того, как орган практически завершил свое развитие, и выражаются в добавлении дополнительных стадий, изменяющих конечный результат.

    К анаболиям относят такие явления, как приобретение специфической формы тела камбалой лишь после того, как из икринки вылупляется малек, неотличимый от других рыб, а также появление изгибов позвоночника, сращение швов в мозговом черепе, окончательное перераспределение кровеносных сосудов в организме млекопитающих и человека.

    2.Девиации - уклонения, возникающие в процессе морфогенеза органа. Примером может являться развитие сердца в онтогенезе млекопитающих, у которых оно рекапитулирует стадию трубки, двухкамерное и трехкамерное строение, но стадия формирования неполной перегородки, характерной для пресмыкающихся, вытесняется развитием перегородки, построенной и расположенной иначе и характерной только для млекопитающих (см. § 14.4).В развитии легких у млекопитающих также обнаруживается рекапитуляция ранних стадий предков, позднее морфогенез идет по-новому (см. разд. 14.3.4).

    Рис. 13.9.Преобразования онто- и филогенеза в связи с возникающими филэмбриогенезами

    Буквами обозначены этапы онтогенеза, цифрами -филэмбриогенетические преобразования

    3.Архаллаксисы - изменения, обнаруживающиеся на уровне зачатков и выражающиеся в нарушении их расчленения, ранних дифференцировок или в появлении принципиально новых закладок. Классическим примером архаллаксиса является

    развитие волос у млекопитающих, закладка которых наступает на очень ранних стадиях развития и с самого начала отличается от закладок других придатков кожи позвоночных (см. § 14.1).

    По типу архаллаксиса возникают хорда у примитивных бесчерепных, хрящевой позвоночник у хрящевых рыб (см. разд. 14.2.1.1), развиваются нефроны вторичной почки у пресмыкающихся (см. разд.14.5.1).

    Ясно, что при эволюции за счет анаболии в онтогенезах потомков полностью реализуется основной биогенетический закон, т.е. происходят рекапитуляции всех предковых стадий развития. При девиациях ранние предковые стадии рекапитулируют, а более поздние заменяются развитием в новом направлении. Архаллаксисы полностью не допускают рекапитуляции в развитии данных структур, изменяя сами их зачатки.

    Если сопоставить схему филэмбриогенезов с таблицей К. Бэра (рис. 13.9),иллюстрирующей закон зародышевого сходства, то станет понятно, что Бэр уже был очень близок к открытию филэмбриогенезов, но отсутствие эволюционной идеи в его рассуждениях не позволило более чем на 100лет опередить научную мысль.

    В эволюции онтогенеза наиболее часто встречаются анаболии как филэмбриогенезы, лишь в малой степени изменяющие целостный процесс развития. Девиации как нарушения морфогенетического процесса в эмбриогенезе часто отметаются естественным отбором и встречаются поэтому значительно реже. Наиболее редко в эволюции проявляются архаллаксисы в связи с тем, что они изменяют весь ход эмбриогенеза, и если такие изменения затрагивают зачатки жизненно важных органов или органов, имеющих значение эмбриональных организационных центров (см. разд. 8.2.6),то часто они оказываются несовместимыми с жизнью.

    В одной и той же филогенетической группе эволюция в разных системах органов может происходить за счет разных филэмбриогенезов.

    Так, в онтогенезе млекопитающих прослеживаются все этапы развития осевого скелета в подтипе позвоночных (анаболии), в развитии сердца рекапитулируют лишь ранние стадии (девиация), а в развитии придатков кожи рекапитуляции вообще отсутствуют (архаллаксис). Знание типов филэмбриогенезов в эволюции систем органов хордовых необходимо врачу для прогнозирования возможности возникновения у плодов и новорожденных врожденных пороков развития атавистической природы (см. разд. 13.3.4).Действительно, если в системе органов, эволюционирующей путем анаболии и девиаций, возможны атавистические пороки развития за счет рекапитуляции предковых состояний, то в случае архаллаксисов это исключается полностью.

    Кроме ценогенезов и филэмбриогенезов в эволюции онтогенеза могут обнаруживаться еще и отклонения времени закладки органов - гетерохронии - и места их развития -гетеротопии. Как первые, так и вторые приводят к изменению взаимосоответствия развивающихся структур и проходят жесткий контроль естественного отбора. Сохраняются лишь те гетерохронии и гетеротопии, которые оказываются полезными. Примерами таких адаптивных гетерохронии являются сдвиги во времени закладок наиболее жизненно важных органов в группах, эволюционирующих по типу арогенеза. Так, у млекопитающих, и в особенности у человека, дифференцировка переднего мозга существенно опережает развитие других его отделов.

    Гетеротопии приводят к формированию новых пространственных и функциональных связей между органами, обеспечивая в дальнейшем их совместную эволюцию. Так, сердце, располагающееся у рыб под глоткой, обеспечивает эффективное поступление крови в жаберные артерии для газообмена. Перемещаясь в загрудинную область у наземных позвоночных, оно развивается и функционирует уже в едином комплексе с новыми органами дыхания -легкими, выполняя и здесь в первую очередь функцию доставки крови к дыхательной системе для газообмена.

    Гетерохронии и гетеротопии в зависимости от того, на каких стадиях эмбриогенеза и морфогенеза органов они проявляются, могут быть расценены как филэмбриогенезы разных типов. Так, перемещение зачатков головного мозга, приводящее к его изгибу, характерному для амниот, и проявляющееся на начальных этапах его дифференцировки, является архаллаксисом, а гетеротопия семенника у человека из брюшной полости через паховый канал в мошонку, наблюдающаяся в конце эмбриогенеза после окончательного его формирования, - типичная анаболия.

    Иногда процессы гетеротопии, одинаковые по результатам, могут являться филэмбриогенезами разных типов. Например, у различных классов позвоночных очень часто встречается перемещение поясов конечностей. У многих групп рыб, ведущих придонный образ жизни, брюшные плавники (задние конечности) располагаются кпереди от грудных, а у млекопитающих и человека плечевой пояс и передние конечности в дефинитивном состоянии находятся значительно каудальнее места их первоначальной закладки. В связи с этим иннервация плечевого пояса у них осуществляется нервами, связанными не с грудными, а с шейными сегментами спинного мозга. У упомянутых выше рыб брюшные плавники иннервируются нервами не задних туловищных, а передних сегментов, расположенных кпереди от центров иннервации грудных плавников. Это свидетельствует о гетеротопии закладки плавников уже на стадии самых ранних зачатков, в то время как перемещение переднего пояса конечностей у человека происходит на более поздних этапах, когда иннервация их уже полностью осуществлена. Очевидно, в первом случае гетеротопия представляет собой архаллаксис, в то время как во втором -анаболию.

    Ценогенезы, филэмбриогенезы, а также гетеротопии и гетерохронии, оказавшись полезными, закрепляются в потомстве и воспроизводятся в последующих поколениях до тех пор, пока новые адаптивные изменения онтогенеза не вытеснят их, заменив собой. Благодаря этому онтогенез не только кратко повторяет эволюционный путь, пройденный предками, но и прокладывает новые направления филогенеза в будущем.

    Ценогенез

    (от греч. kainós - новый и...генез (См. …генез)

    приспособление организма, возникающее на стадии зародыша (плода) или личинки и не сохраняющееся у взрослой особи. Примеры Ц. - плацента млекопитающих, обеспечивающая у плода дыхание, питание и выделение; наружные жабры личинок земноводных; яйцевой зуб у птиц, служащий птенцам для пробивания скорлупы яйца; органы прикрепления у личинки асцидий, плавательный хвост у личинки трематод - церкария и др. Термин «Ц.» введён в 1866 Э. Геккелем для обозначения тех признаков, которые, нарушая проявления палингенезов (См. Палингенезы ), т. е. повторений далёких этапов филогенеза в процессе зародышевого развития особи, не позволяют проследить в ходе онтогенеза современных форм последовательность этапов филогенеза их предков, т. е. нарушают Биогенетический закон . В конце 19 в. Ц. стали называть любое изменение свойственного предкам хода онтогенеза (немецкие учёные Э. Менерт, Ф. Кейбель и др.). Современное понимание термина «Ц.» сформировалось в результате работ А. Н. Северцова, сохранившего за этим понятием лишь значение провизорных приспособлений, или эмбрио-адаптаций. См. также Филэмбриогенез .

    Ценогенез (греч. kainos новый + genesis зарождение, образование) - появление у зародыша или личинки приспособлений к условиям существования, не свойственных взрослым стадиям, напр. образование оболочек у зародышей высших животных.

    Филэмбриогенез

    (от греч. phýlon – племя, род, вид и Эмбриогенез

    ФИЛЭМБРИОГЕНЕ́З (от греч. phylon - род, племя, embryon - зародыш и genesis - происхождение), эволюционное изменение онтогенеза органов, тканей и клеток, связанное как с прогрессивным развитием, так и с редукцией. Учение о филэмбриогенезе разработано российским биологом-эволюционистом А.Н. Северцовым . Модусы (способы) филэмбриогенеза различаются по времени возникновения в процессе развития этих структур.

    Если развитие определенного органа у потомков продолжается после той стадии, на которой оно заканчивалось у предков, происходит анаболия (от греч. anabole - подъем) - надставка конечной стадии развития. Примером может служить формирование четырехкамерного сердца у млекопитающих. У земноводных сердце трехкамерное: два предсердия и один желудочек. У пресмыкающихся в желудочке развивается перегородка (первая анаболия), однако эта перегородка у большинства из них неполная - она только уменьшает перемешивание артериальной и венозной крови. У крокодилов и млекопитающих развитие перегородки продолжается до полного разделения правого и левого желудочков (вторая анаболия). У детей иногда как атавизм межжелудочковая перегородка бывает недоразвитой, что ведет к тяжелому заболеванию, требующему хирургического вмешательства.

    Продление развития органа не требует глубоких изменений предшествующих стадий его онтогенеза, поэтому анаболия - наиболее распространенный способ филэмбриогенеза. Предшествующие анаболиям стадии развития органов остаются сопоставимыми с этапами филогенеза предков (т. е. являются рекапитуляциями ) и могут служить для его реконструкции (см. Биогенетический закон ). Если развитие органа на промежуточных стадиях уклоняется от того пути, по которому шел его онтогенез у предков, происходит девиация (от позднелат. deviatio - отклонение). Например, у рыб и у пресмыкающихся чешуи возникают как утолщения эпидермиса и подстилающего его соединительно-тканного слоя кожи - кориума. Постепенно утолщаясь, эта закладка выгибается наружу. Затем у рыб кориум окостеневает, формирующаяся костная чешуя протыкает эпидермис и выдвигается на поверхность тела. У пресмыкающихся, напротив, кость не образуется, но эпидермис ороговевает, образуя роговые чешуи ящериц и змей. У крокодилов кориум может окостеневать, образуя костную основу роговых чешуй. Девиации приводят к более глубокой, чем анаболии, перестройке онтогенеза, поэтому они встречаются реже.

    Реже всего возникают изменения первичных зачатков органов - архаллаксисы (от греч. arche - начало и allaxis - изменение). При девиации рекапитуляцию можно проследить от закладки органа до момента уклонения развития. При архаллаксисе рекапитуляции нет. Примером может служить развитие тел позвонков у земноводных. У ископаемых земноводных - стегоцефалов и у современных бесхвостых земноводных тела позвонков формируются вокруг хорды из нескольких, обычно трех с каждой стороны тела, отдельных закладок, которые затем сливаются, образуя тело позвонка. У хвостатых земноводных эти закладки не возникают. Окостенение разрастается сверху и снизу, охватывая хорду, так что сразу образуется костная трубка, которая, утолщаясь, становится телом позвонка. Этот архаллаксис является причиной до сих пор дискутируемого вопроса о происхождении хвостатых земноводных. Одни ученые считают, что они произошли непосредственно от кистеперых рыб, независимо от остальных наземных позвоночных. Другие - что хвостатые земноводные очень рано дивергировали от остальных земноводных. Третьи, пренебрегая развитием позвонков, доказывают близкое родство хвостатых и бесхвостых земноводных.

    Редукция органов , утративших свое адаптивное значение, тоже происходит путем филэмбриогенеза, главным образом, посредством отрицательной анаболии - выпадения конечных стадий развития. При этом орган либо недоразвивается и становится рудиментом , либо претерпевает обратное развитие и полностью исчезает. Примером рудимента может служить аппендикс человека - недоразвитая слепая кишка, примером полного исчезновения - хвост головастиков лягушек. В течение всей жизни в воде хвост растет, на его конце добавляются новые позвонки и мышечные сегменты. Во время метаморфоза, когда головастик превращается в лягушку, хвост рассасывается, причем процесс идет в обратном порядке - от конца к основанию. Филэмбриогенез - основной способ адаптивного изменения строения организмов в ходе филогенеза.

    Принципы (способы) филогенетических преобразований органов и функций. Соответствие структуры и функции в живых системах. Полифункциональность. Количественные и качественные изменения функций биологических структур.

    ОБЩИЕ ЗАКОНОМЕРНОСТИ

    ЭВОЛЮЦИИ ОРГАНОВ

    Организм, или особь, -отдельное живое существо, в процессе онтогенеза проявляющее все свойства живого. Постоянное взаимодействие особи с окружающей средой в виде организованных потоков энергии и вещества поддерживает ее целостность и развитие. В структурном отношении организм представляет собой интегрированную иерархическую систему, построенную из клеток, тканей, органов и систем, обеспечивающих его жизнедеятельность. Подробнее остановимся на органах и системах жизнеобеспечения.

    Органом называют исторически сложившуюся специализированную систему тканей, характеризующуюся отграниченностью, постоянством формы, локализации, внутренней конструкции путей кровообращения и иннервации, развитием в онтогенезе и специфическими функциями. Строение органов часто очень сложно. Большинство из них полифункционально, т.е. выполняет одновременно несколько функций. В то же время в реализации какой-либо сложной функции могут участвовать различные органы.

    Группу сходных по происхождению органов, объединяющихся для выполнения сложной функции, называют системой (кровеносная, выделительная и др.).

    Если одну и ту же функцию выполняет группа органов разного происхождения, ее называют аппаратом. Примером служит дыхательный аппарат, состоящий как из органов собственно дыхания, так и из элементов скелета и мышечной системы, обеспечивающих дыхательные движения.

    В процессе онтогенеза происходит развитие, а часто и замена одних органов другими. Органы зрелого организма называют дефинитивными; органы, развивающиеся и функционирующие только в зародышевом или личиночном развитии, -провизорными. Примерами провизорных органов являются жабры личинок земноводных, первичная почка и зародышевые оболочки высших позвоночных животных (амниот).

    В историческом развитии преобразования органов могут иметь прогрессивный или регрессивный характер. В первом случае органы увеличиваются в размерах и становятся более сложными по своему строению, во втором -уменьшаются в размерах, а их строение упрощается.

    Если у двух организмов, находящихся на разных уровнях организации, обнаруживаются органы, которые построены по единому плану, расположены в одинаковом месте и развиваются сходным образом из одинаковых эмбриональных зачатков, то это свидетельствует о родстве данных организмов. Такие органы называют гомологичными. Гомологичные органы часто выполняют одну и ту же функцию (например, сердце рыбы, земноводного, пресмыкающегося и млекопитающего), но в процессе эволюции функции могут и меняться (например, передних конечностей рыб и земноводных, пресмыкающихся и птиц).

    При обитании неродственных организмов в одинаковых средах у них могут возникать сходные приспособления, которые проявляются в возникновении аналогичных органов. Аналогичные органы выполняют одинаковые функции, строение же их, местоположение и развитие резко различны. Примерами таких органов являются крылья насекомых и птиц, конечности и челюстной аппарат членистоногих и позвоночных.

    Строение органов строго соответствует выполняемым ими функциям. При этом в исторических преобразованиях органов изменение функций непременно сопровождается и изменением морфологических характеристик органа.

    Онтогене́з - индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом, от оплодотворения(при половом размножении ) или от момента отделения от материнской особи (при бесполом размножении) до конца жизни.

    Жизненный цикл развития как отображение эволюции.

    Жизненный цикл есть результат генетической программы, выработанной в ходе длительного процесса эволюционного развития.

      Оплодотворение (зигота – одноклеточный организм).

      Эмбриональное развитие (бластула – колониальные простейшие, гаструла – простейшее многоклеточное, плод – полноценное многоклеточное).

      Рождение (позвоночные).

      Постэмбриональное развитие (млекопитающие).

      Старение.

    2. Теория происхождения многоклеточных э.Геккеля и и.И.Мечникова

    Теория Э.Геккеля (1884):

    В построении своей гипотезы он исходил из эмбриологических исследований, проведенных к тому времени А.О.Ковалевским и другими зоологами преимущественно на ланцетнике и ряде позвоночных. Опираясь и биогенетический закон, Геккель считал, что каждая стадия онтогенеза повторяет какую-то стадию, пройденную предками данного вида во время филогенетического развития. По его представлениям, стадия зиготы соответствует одноклеточным предкам, стадия бластулы - шарообразной – колонии жгутиковых. Далее по этой гипотезе произошло впячивание одной из сторон шарообразной колонии и образовался двухслойный организм, названный Геккелем гастреей, а гипотеза Геккеля получила название теории гастреи. Эта теория сыграла большую роль в истории науки, так как способствовала утверждению монофилитических представлений о происхождении многоклеточных.

    Теория И.И. Мечникова (1886):

    По его представлениям у гипотетического предка многоклеточных – шарообразной колонии жгутиковых – клетки, захватывавшие пищевые частички, временно теряли жгутики и перемещались внутрь колонии. Затем они могли вновь возвращаться на поверхность и восстанавливать жгутик. Постепенно в шарообразной колонии произошло разделение функции между сочленами колонии. Для успешного захвата пищи необходимо активное движение, что привело к поляризации организма. Передние клетки приобретали специализацию в отношении движения, а задние в отношении питания . Возникшее затруднение передачи пищи от задних клеток к передним повлекло за собойиммиграцию фагоцитобластов в полость тела. Этот гипотетический организм схож с личинкой многих губок и

    кишечнополостных. Первоначально Мечников назвал его перенхимеллой. Затем в связи с тем, что внутренний слой у гипотетического организма формируется из фагоцитобластов, он назвал его фагоцителлой. Данная теория получила название теории фагоцителлы.

    3. Биогенетический закон Геккеля-Мюллера и его применение в построении концепции происхождения многоклеточных

    Биогенетический закон (Э. Геккеля и Ф. Мюллера): каждая особь на ранних стадиях онтогенеза повторяет некоторые основные черты строения своих предков, иначе говоря, онтогенез (индивидуальное развитие) есть краткое повторение филогенеза (эволюционного развития

    Независимо друг от друга Геккель и Мюллер сформулировали биогенетический закон.

    ОНТОГЕНЕЗ ЕСТЬ КРАТКОЕ ПОВТОРЕНИЕ ФИЛОГЕНЕЗА.

    В онтогенезе Геккель различал палингенезы и ценогенезы. Палингенез – признаки зародыша, повторяющие признаки предков (хорда, хрящевой первичный череп, жаберные дуги, первичные почки, первичное однокамерное сердце). Но их образовании может сдвигаться во времени – гетерохронии, и в пространстве – гетеротопии. Ценогенезы – приспособительные образования у зародыша, не сохраняющиеся во взрослом состоянии. Он указал, что ценогенезы влияют на палингенезы, искажают их. Он считал, что из-за ценогенезов рекапитуляция происходит не полностью. Он отталкивался от этой теории когда создавал теорию гастреи.

    Дальнейшие исследования показали, что биогенетический закон справедлив лишь в общих чертах. Нет ни одной стадии развития, на которой зародыш повторял бы строение своих предков. Установлено так же, что в онтогенезе повторяется строение не взрослых стадий предков, а эмбрионов.

    Похожие публикации