Изучение генома человека вступает в новую фазу. Лечение генетических заболеваний за границей Моделирование и генетика

В настоящее время изучение геномов не ограничивается только картированием генов, стало возможным изучать последовательность расположения нуклеотидов в составе любого гена. Решающим шагом на пути к решению этой проблемы явилось применение особых ферментов рестрикционных эндонуклеаз и разработка метода клонирования генов.

Рестрикционные эндонуклеазы (рестриктазы) ферменты, расщепляющие ДНК в специфических участках нуклеотидных последовательностей, которые они распознают. Эти ферменты обнаружены у многих бактерий. Они определяют и разрушают чужеродные молекулы ДНК, попадающие в клетку, в том числе при инфицировании их фагами или при трансформации. Таких ферментов обнаружено более 100, и каждый из них распознает в ДНК специфическую последовательность из 4 6 нуклеотидов. Каждая рестриктаза способна разрезать двойную спираль ДНК любой длины. При этом образуется серия фрагментов, называемых рестрикционными фрагментами. Сравнение размеров этих фрагментов, полученных при обработке бактериальных или плазмидных геномов (а также ДНК хромосом эукариот), позволяет создавать рестрикционные карты, в которых отмечается локализация каждого разреза участка относительно соседних участков других таких разрезов (рестрикций).

Существенно, что многие рестриктазы вносят разрывы в обе цепи ДНК со смещением на несколько нуклеотидов. Вследствие этого на конце нити одного фрагмента образуется участок, нуклеотидные последовательности которого оказываются комплементарными нуклеотидным последовательностям другой нити с другого конца фрагмента. Такие концевые последовательности, комплементарные друг другу, получили название липких концов. С их помощью образовавшиеся рестрикционные фрагменты будут вновь образовывать кольца в результате спаривания липких концов. Способность рестрикционных нуклеаз разрезать ДНК с образованием липких концов широко используется в технологии создания рекомбинантных ДНК, так как при помощи таких концов можно соединить два любых фрагмента ДНК, если они получены с помощью одной и той же рестриктазы и, следовательно, имеют комплементарные липкие концы. После замыкания последних путем образования комплементарных пар оснований образовавшееся кольцо из фрагментов разных ДНК можно сшить ковалентными фосфодиэфирными связями между противоположными концами каждой нити ДНК с помощью ДНК-лигазы. В этом заключается суть технологии получения рекомбинантных молекул ДНК.

Ранее всего был изучен геном бактериального вируса ФХ174. Е го ДНК состоит из 5400 нуклеотидов и содержит 9 генов. Вирус ФХ174 можно увидеть только с помощью электронного микроскопа, а запись его генетической информации, содержащейся в 9 генах, в виде линейной последовательности через буквы (А, Т, Г, Ц) занимает целую страницу текста. Запись в таком же виде информации, имеющейся в хромосоме животной клетки, составит книгу объемом более 500000 страниц!

Изучение генома человека началось в 80-х гг. XX в. В последующем была создана Международная организация по изучению генома человека HUGO (от англ. Human Genome Organization организация генома человека). Изучением генома человека занимаются ученые США, Японии, ряда стран Европы, России и др.

Основная задача определить последовательное расположение всех нуклеотидов (а их 3,5 109 пар) во всех 23 парах хромосом человека. Предстоит выяснить молекулярные основы наследственных болезней и определить пути их лечения рано или поздно генотерапия станет вполне реальной. Уже сейчас осуществляется ДНК-диагностика более 100 наследственных болезней. После открытия структуры ДНК, гена и расшифровки генетического кода осуществление программы «Геном человека» будет означать самую фундаментальную революцию в биологии и медицине.

Генетика человека – наука, объединяющая в себе генетику и медицину. Она посвящена закономерностям наследования, изменения, эволюции человека. Генетика расс...

От Masterweb

03.04.2018 20:00

Генетика человека – наука, объединяющая в себе генетику и медицину. Она посвящена закономерностям наследования, изменения, эволюции человека. Данная наука рассматривает как индивидуумов, состояние которых полностью соответствует норме, так и имеющих различные индивидуальные признаки физиологии, психологии, доставшиеся с рождения, а также патологические состояния. Генетика рассматривает и поведенческие аспекты. Основная задача ученых – определить, что формируется под влиянием среды, а что представляет собой проявления генотипа.

Общее представление

Генетика человека основана на общих закономерностях – таковые универсальны, их можно применять к самым разным видам и особям, и человек не является исключением. В настоящее время выявлено более 3 000 признаков, присущих человеку. Они затрагивают морфологию, биохимию, физиологию. 120 из них имеют связь с половой принадлежностью. Ученые смогли выявить и исследовать 23 типа генетического сцепления. Удалось составить карту хромосом, на которой зафиксированы многие гены.

Особенного внимания заслуживают исследования, проведенные в рамках уточнения генетики человека, посвященные малочисленным популяциям, то есть таким социумам, в которых не более полутора тысяч человек. Ученые установили, что для подобной группы людей частота заключения браков внутри превышает 90 %, следовательно, всего лишь за один век все участники становятся друг другу троюродными родственниками. Исследования показали, что в таких условиях повышается риск рецессивных мутаций. Порядка восьми процентов из них летальны, некоторые связаны со строением глаз или скелета. Мутации зачастую наблюдаются уже на этапе формирования плода, что приводит к его преждевременной гибели – еще до родов или сразу после появления на свет.

Особенности и цифры

Исследуя генетику человека, удалось выявить, что гаплоидный набор представляет собой комбинацию генов в количестве не менее 100000, но у некоторых это число достигает миллиона. Один геном – источник мутаций от одной до десятка. Рост вероятности мутаций на 0,001 % для конкретного индивидуума не значит практически ничего, но при оценке здоровья популяции картина меняется – количество больных измеряется сотнями и тысячами. Анализируя полученную информацию, ученые смогли оценить, насколько важно мутагенное влияние мира вокруг нас. Именно исследуя его в масштабах популяции, можно осознать величину проблемы.

Изучая геном человека в генетике, удалось установить, что человеку присущи некоторые специфические особенности, из-за которых научный прогресс замедляется. В частности, кариотип обладает огромным количеством хромосом, кроме того, в браке обычно рождается мало детей. А во время беременности преимущественно женщина вынашивает только одного ребенка. Исключения возможны, но встречаются редко. Сложность исследования генетики человека связана с продолжительностью взросления и медленной сменой поколений, а также невозможностью сформировать брачную базу, организовать подопытное скрещивание, применять искусственные технологии для активизации мутаций.

Исследование генетики человека – это не только вынужденная борьба со сложностями и проблемами, но и ряд специфических достоинств. Для человека свойственны мутации, в настоящее время их разнообразие только растет. Кроме того, подробно изучены физиология, анатомия вида. Популяция в целом многочисленная, а значит, ученые могут подобрать среди существующих такие брачные схемы, которые максимально соответствуют целям проводимой научной работы.

Не стоять на месте

Задачи генетики человека – изучить, как происходит наследование, в каких формах проявляются генетические признаки у различных особей. В настоящее время ученые точно знают, что от человека к человеку набор признаков меняется достаточно существенно. Это объясняется актуальностью всех типов наследования: по доминанте, рецессивному гену, аутосомно, кодоминантно, в сцеплении с половой хромосомой. Чтобы добиться максимальной точности исследований, необходимо использовать специфические методы – таковые разработаны специально для изучения человека. Не останавливается работа над новыми методами и способами, которые позволят получить больше информации по этой теме.

Вот уже не первое десятилетие ученые не только лишь собирают новые сведения. В генетике человека используют аналитические подходы, предполагающие анализ уже известных данных с учетом новой полученной информации. Такой непрекращающийся аналитический процесс позволяет расширять каталог человеческих признаков, передающихся между поколениями.


Человек и наука

Изучение генетики человека предполагает исследование механизмов наследования и особенностей изменчивости, присущей человеку как виду. Альтернативный термин, которым обозначают науку – антропогенетика. Наука посвящена различиям и общностям людей, объясняемым наследственным фактором. В настоящее время принято в отдельную категорию выносить медицинскую генетику. Эта область посвящена передающимся по наследству болезням, методам их лечения и предупреждения. Актуальность исследований тесно связана с большой наработанной базой информации по этому вопросу. Удалось получить довольно четкие сведения о морфологии и физиологии, биохимии человека. Вся эта информация актуальна при изучении генетической специфики представителей популяции.

Особенности изучения наследственности, генетика человека – наука, тесно связанная с особенностями социума, этики, биологии человека. При этом учитывают, что человек имеет возможность мыслить абстрактно, воспринимать данные. Эти черты считаются неоспоримыми преимуществами, которые не присущи иным объектам, исследуемым генетикой.

Исследования: как организованы?

В генетике человека используют методы: цитогенетика, статистика, исследование популяций, онтогенетика, генеалогия, моделирование. Распространен близнецовый подход к изучению человека. Интересный и дающий немало полезной информации способ – дерматоглифика. В генетике человека используют метод гибридизации, в качестве материала для работы применяя соматические клетки. Актуальны также подходы, позволяющие работать на уровне молекул.

Кроме основных используют вспомогательные методики – они предназначены для получения дополнительной информации. Таковые предполагают применение методов микробиологии, биохимии, иммунологии и других смежных дисциплин.


Генеалогия

Этот метод генетики человека основан на исследовании признаков, свойств, передающихся от человека к человеку по наследству. Для изучения необходимо иметь доступ к родословной индивидуума. Впервые такой подход разработан Гальтоном, а для упрощения его применения впоследствии Юст предложил применять условную символику. Генеалогия предполагает формирование родословной и последующий анализ информации.

В рамках такого метода генетики человека необходимо сперва собрать исчерпывающе данные о семье. Далее информацию фиксируют графически, применяя стандартную символику. В рамках аналитического исследования собранной базы данных оценивают, можно ли конкретный признак назвать семейным, а также определяют, по какому механизму он передается. Ученые исследуют, каковы генотипы близких родственников, вычисляют риски появления анализируемого признака в будущих поколениях. Для разных механизмов наследования свойственны индивидуальные особенности, и их черты видны при анализе родословной.

О деталях

Для аналитической работы в этом методе изучения генетики человека необходимо сперва сформировать представление о правилах моногенной передачи свойств по наследству. Менделирующие признаки, исследуемые таким образом, дискретны, детерминированы, расщепляемы. Для оценки дискретности необходимо проанализировать морфологию, физиологию, биохимию, иммунологию, клинические критерии.

Особенно подробную информацию о систематизации признаков можно найти в работах Кьюсика, опубликовавшего каталог менделирующих человеческих признаков. Генеалогия как способ исследования сравнима с гибридологическим методом, а отличия объясняются социальными особенностями и человеческой биологией. В настоящее время такой подход широко применяется в исследованиях мутаций, наследования, сцепленного с полом, а также в рамках медицинского генетического консультирования.


Близнецовый способ

Такой метод изучения генетики человека предполагает наличие пар близнецов. Объекты исследуются, ученые выявляют, каковы сходства между ними, в чем заключаются различия. Близнецами считают только таких детей, которые были выношены и одновременно появились на свет у одной матери. Различают моно- и дизиготные формы. В первом случае исходный материал – одна зигота, при этом генотипы совпадают, пол – тоже. При двух зиготах генотипы близнецов отличны, а пол может совпадать или нет.

Когда для изучения генетики человека используют метод близнецов, сперва выявляют зиготность полисимптомным подходом. Оценивают людей на сходство по признакам, для которых установлено наследование, а влияние среды на них минимально. Когда удается определить точно зиготность, производят сопоставление индивидуумов по конкретному признаку.

Конкордантная пара выявляется, если некоторый признак присутствует у обоих близнецов. При его отсутствии у одного из близнецов говорят о дискордантной паре. Если для изучения генетики человека используют метод близнецов, учитывают, что полученная информация наиболее точно позволяет оценить, какова роль наследования, насколько сильно влияет среда на коррекцию определенного признака. Ученые могут установить, какие признаки передаются по наследству, почему гены отличаются по пенетрантности. В рамках изучения можно оценить, насколько эффективно влияют на особь внешние факторы – от медикаментозных до подходов к воспитанию.

Цитогенетика

Медицинская генетика человека предполагает изучение клеточных структур под микроскопом. В рамках такого исследования внимание уделяется хромосомам. Основная задача специалиста – выявить половой хроматин, провести кариотипирование. Этот процесс необходим, чтобы выявить метафазные хромосомы.

Кариотипом называется диплоидный хромосомный набор, свойственный конкретному виду. Идиограмма – кариотип, зафиксированный в форме диаграммы. Кариотипирование эффективно проводить, если есть лимфоциты особи. Сперва извлекают определенное число способных к делению клеток, получают метафазные пластинки, гипотонический раствор. Систематизация производится одним из двух методов – Парижский либо Денверский.

Денверский вариант предполагает учитывать форму, размер хромосомы, а в работе применяют метод сплошного окрашивания. Существует семь категорий хромосом. Сложность применения подхода в том, что непросто идентифицировать внутри группы отдельные хромосомы.

Парижский метод классификации предполагает окрашивание метафазных хромосом. Каждая из них отличается уникальным рисунком, а диски позволяют провести четкую дифференциацию.


Пренатальная диагностика

Тесно связаны между собой генетика и здоровье человека. Чтобы предупредить рождение страдающего патологическими отклонениями ребенка, применяется пренатальная диагностика. Эта мера считается первичным способом предупреждения заболеваний, передающихся по наследству. Подходов к диагностике известно несколько, выбор в пользу конкретного зависит от специфики семьи и состояния будущей матери.

Непрямой метод исследования генетики человека с основами медицинской генетики предполагает изучение беременных для определения групп риска. Кровь проверяют на альфа-фетопротеин, выявляют параметры ХГЧ, эстриола. Известно, к примеру, что болезнь Дауна нередко наблюдается при повышенном ХГЧ и пониженном эстриоле. Из показателей альфа-фетопротеина можно заключить, насколько высока вероятность патологий нервной трубки, кожных покровов, риски хромосомных заболеваний.

Альтернативный вариант

В рамках основ генетики человека были разработаны прямые подходы к пренатальной диагностике. Таковыми бывают инвазивные и не предполагающие хирургических операций. Неинвазивные – изучение состояния плода с помощью ультразвука. Так можно определить многоплодную беременность, некоторые заболевания и дефекты.

К прямым инвазивным способам относятся хорионбиопсия, плацентобиопсия, амниоцентез, кордоцентез, фетоскопия. Для изучения состояния могут взять образцы кожных покровов плода. Материалы и образцы, полученные для последующей работы, изучают посредством подходов цитогенетики, биохимии, проверяют молекулярный состав и генетические особенности. Полученные выводы используют, консультируя будущих родителей по вопросам наследственности. Генетика человека на этапе дородовой диагностики позволяет выявить риск хромосомных заболеваний и молекулярных отклонений. Кроме того, именно эти методы применяются, чтобы выявить пол будущего ребенка и оценить вероятность пороков развития плода.


Моделирование и генетика

Если генеалогический метод изучения генетики человека позволяет оценить вероятность наследования признаков исходя из наблюдения их у предыдущих поколений, то моделирование – это такой подход, в рамках которого наследственная изменчивость используется для формирования модели объекта. Применяют законы Вавилова, указывающие, что близкие генетически виды, роды имеют подобные ряды изменчивости, передающейся по наследству. Филогенетически близкие индивидуумы дают однозначный ответ на внешние факторы, в том числе провоцирующие мутации.

Прибегая к мутантным линиям, свойственным животным, можно сформировать модели передачи по наследству ряда болезней, свойственных и животным, и человеку. Ученые получают новые методы исследования путей формирования заболеваний, методов их передачи по наследству. В настоящее время появляются новые походы к диагностированию, основанные на достижениях генетики. Данные, получаемые при изучении животных, к человеку применяются после внесения определенных поправок.

Биохимия и статистика

Онтогенетический метод, актуальный для исследования генетики человека, предполагает изучение с применением подходов биохимии для выявления проблем метаболизма и сбоев, индивидуальных для конкретного объекта, если таковые объясняются мутацией. В организме объекта можно наблюдать промежуточные продукты обменных реакций, и их выявление в органических жидкостях получило широкое применение в подходах к диагностике патологических состояний.

Статистика и исследование популяций – это такой подход в современной генетике, который предполагает изучение генетического популяционного состава. Собрав достаточно объемную базу данных, можно оценить, насколько высок шанс появления особи, имеющей заданный фенотип, в изучаемой группе людей. Можно вычислить частоту генных аллелей, генотипов.

Еще один подход, применимый в наши дни – молекулярная генетика. Это та самая генная инженерия, о которой слышали многие, хотя далеко не всякий человек представляет себе, в чем заключается суть работы ученых. Инженерия заключается в выделении генов и создании их клонов, формировании рекомбинантных молекул и помещении их в живую клетку. Матрицы, полученные при синтезировании новых нуклеиновых кислотных цепей, используются для репликации. Молекулярная генетика активно использует подход секвенирования и некоторые другие высокотехнологичные способы.

Генетика и особенности человека

Наследственность обеспечивается наличием генов, чьи носители – хромосомы. Объект получает набор генов от матери, отца. Между поколениями передача реализована через половые клетки. В организме ген представлен дважды, переданный матерью и отцом. Гены могут быть тождественными, могут разниться. В первом случае говорят о гомозиготности, во втором – гетерозиготности. Вероятность первого варианта исключительно низка, поскольку генов слишком много. При наличии общей линии предков шанс гомозиготности выше, поскольку отец и мать передают ребенку идентичные гены. На практике такое встречается нечасто в силу института брачных отношений и действующих законов. Филологический фундамент уникальности личности, ее неповторимости объясняется разнообразием генетического набора в каждом конкретном случае.

Популяционная человеческая генетика – один из важнейших разделов науки. Человеческая популяция существенно отличается от прочих видов, так как это продукт истории, естественного отбора, развития общества. Генетическое воспроизводство – это и биологический процесс, и социальный, связанный с демографией и неотделимый от него и воспроизводства населения. Передача данных между поколениями и распределение генетических наборов, миграции и взаимные связи со средой, окружающей человека, обеспечивают движение генетического материала. Можно с уверенностью говорить, что генетика и демография – тесно связанные между собой аспекты; популяционная генетика фактически представляет собой демографическую, а ученые, занимающиеся ею, изучают результаты процессов, свойственных демографии.


Нюансы и особенности

Продолжительное исследование генетики и демографических изменений позволяет с уверенностью заключить, что генофонд во времени постоянен, хотя и представлен в каждом конкретном поколении обилием уникальных генотипов. Постоянство обеспечивается рождаемостью и смертностью, перемещением носителей генетической информации. Популяционный генофонд может меняться, поскольку разные носители материала участвуют в процессе воспроизводства с разной степенью активности. Эта особенность – элемент естественного отбора, под влиянием которого структура фонда генов меняется, а общность в большей степени соответствует условиям среды, в которой обитает человек.

В человеческой популяции изменение генофонда в некоторой степени обусловлено мутациями, дрейфом генов и миграцией. Естественные мутации – процесс, скорость которого считается соответствующей нормальному изменению генофонда. Генотипы, формирующиеся в таком процессе, могут быть совершенно новыми, несвойственными ранее сообществу. Регулярная генная миграция сглаживает различия между популяциями, приводит к утере своеобразия, уникальности, объясняющейся локальной спецификой среды.

Генная миграция обусловлена миграцией носителей генетического материала. В настоящее время нет возможности однозначно оценить и описать роль миграции в развитии человечества. Ряд последствий миграции очевиден, основной процент населения мира – продукт смешанной популяции.

Стабильность и прогресс

Шанс на то, что мутаций, миграций, генетического отбора не будет, крайне мал, но даже если представить, что такое возможно, все равно остается возможность изменения генофонда. Это объясняется дрейфом генов, то есть процессом генетической корректировки на популяционном уровне. В частности, к дрейфу может привести малочисленность популяции. Как правило, дрейф свойственен эндогамным социумам, чья отличительная особенность – небольшое количество носителей генотипов, в то время как потенциальное разнообразие наборов признаков исключительно велико.

Малочисленность популяции позволяет в каждом новом поколении реализовываться только небольшому проценту возможных наборов особенностей. Следовательно, генофонд каждого нового поколения появляется как продукт случайного выбора некоторого числа генов, переданных от родителей.

В рамках демографической генетики дрейф генов считается независимым от среды процессом. Исследуя малочисленные человеческие популяции, можно заметить, как уровень развития культуры, общества, экономики влияет на численность населения, как это сказывается на характере взаимодействия с окружающей средой. Дрейф генов, определяемый количеством людей в социуме, зависит от специфики общества и среды, в которой оно существует.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

МЕТОДЫ ИЗУЧЕНИЯ ДНК

1. Для выделения ДНК из гомогената тканей уда­ляют фрагменты клеточных органелл и мембран с помощью центрифугирования. Белки, разрушенные
протеазами (чаще всего применяют протеиназу К), экстрагируют из раствора. Затем ДНК осаждают, на­пример, этанолом и после удаления надосадочной
жидкости ДНК растворяют в буферном растворе.

2. Молекула ДНК среднего размера содержит 150 000 000 нуклеотидных пар и имеет длину 4 см.
Поэтому молекулы ДНК чувствительны к сдвиго­вым усилиям, возникающим в растворе, и в процессе выделения ДНК из тканей она фрагменти-руется. Получаются молекулы ДНК значительно меньше исходных, но все равно очень большие - тысячи или десятки тысяч пар нуклеотидов. Такие молекулы неудобны для исследований, и их при­ходится дополнительно фрагментировать.

Для фрагментирования используют рестриктазы - ферменты, выделяемые из бактерий. У бак­терий эти ферменты участвуют в уничтожении чужеродных для них ДНК. Рестриктазы «узнают» специфические последовательности из 4-6 нук­леотидов (сайты рестрикции), которые встреча­ются в ДНК человека. Известно множество раз­личных рестриктаз, причем каждая из них «узнает» свой сайт рестрикции (рис. 3.3).

С помощью набора рестриктаз можно разрезать молекулу ДНК на фрагменты желаемой длины. На­пример, для изучения первичной структуры удобны фрагменты размером около 300 нуклеотидных пар н.п. Следовательно, цельную молекулу ДНК в 150 000 000 н.п. нужно разрезать на 500 000 фраг­ментов и каждый из фрагментов изучать отдельно.

Полимеразная цепная реакция (ПЦР). Для прове­дения некоторых исследований необходимо боль­шое количество хорошо очищенной высокомоле­кулярной ДНК. Метод ПЦР дает возможность избирательно синтезировать in vitro небольшие уча­стки ДНК и получить за 3-4 ч несколько миллио­нов копий исследуемого фрагмента. Объектами для выделения ДНК могут быть кровь, биоптат ткани, слюна, моча, околоплодные воды и т.д. Подробно этот метод и его применение в ДНК-диагностике будут рассмотрены в теме 3.10.

Гибридизация. Для изучения видовой специфично­сти нуклеиновых кислот применяют метод гибриди­зации. Он основан на способности ДНК к денатура­ции при нагревании (80-90 °С) и ренативации при последующем охлаждении. Возможно использова­ние метода для проведения гибридизации ДНК-ДНК и ДНК-РНК. Методом гибридизации можно установить сход­ство и различия первичной структуры разных об­разцов нуклеиновых кислот.

Секвенирование генома.

Секвенирование генома здорового человека в большинстве случаев не способно предсказать развитие у него в будущем тех или иных заболеваний. Результаты этой работы были представлены на Ежегодной встрече Американской Ассоциации по исследованию рака (Association for Cancer Research), а также опубликованы в журнале Science Translational Medicine .

Полное секвенирование генома представляет собой «каталогизирование» всех генов, полученных человеком от обоих родителей, и их проверку на наличие повреждений ДНК, которые могли бы повысить восприимчивость человека к раку и иным заболеваниям. Поскольку стоимость секвенирования генома постоянно снижается (в настоящее время цена процедуры составляет 1-3 тысячи долларов США), многие здоровые люди начали задумываться над тем, чтобы пройти такое обследование и определить для себя риск развития того или иного заболевания. Однако исследователи из Центра по изучению рака Johns Hopkins Kimmel призывают их не торопиться.

Выводы ученых вовсе не означают, что секвенирование генома не имеет никакой медицинской ценности. «Во-первых, секвенирование генома остается лучшим средством для предсказания „семейных“ заболеваний, таких как рак и некоторые другие, - говорит профессор онкологии Берт Фогельштайн (Bert Vogelstein). - Во-вторых, детальное изучение генома индивидуума помогает лучше понять механизм уже протекающего у него заболевания и точнее подобрать для него индивидуальную терапию. Однако в случае со здоровым человеком геном перестает быть надежным предсказателем».

Исследователи проследили развитие 24 заболеваний у более чем 50 тысяч близнецов из 5 стран, прошедших процедуру секвенирования генома. Результаты показали, что в случае 23 заболеваний анализ генома дал отрицательный результат и отнес риск их развития к разряду «низкий». Однако, по словам профессора Фогельштайна, это вовсе не означает, что данное заболевание у данного человека не разовьется. «Это означает всего лишь, что его персональный риск немного ниже, чем средний риск по популяции, который может быть очень существенным, - говорит исследователь. - Таким образом, даже негативный результат не гарантирует отсутствия заболевания в будущем». При этом риск 4 из 24 заболеваний- заболевания сердца у мужчин, аутоиммунный тиреоидит, диабет I типа и болезнь Альцгеймера - устойчиво определялся в ¾ случаев, что позволяет назвать секвенирование генома достаточно надежным средством определения предрасположенности к этим болезням.

Современная геномика.

Длительное время геномом называли гаплоидный набор хромосом. Накопление сведений об информационной роли внехромосомной ДНК изменило определение термина «геном». В настоящее время он означает полный состав ДНК клетки, т.е. совокупность всех генов и межгенных участков. Можно считать, что геном - полный набор инструкций для формирования и функционирования индивида.

Общие принципы построения геномов и их структурно-функциональную организацию изучает геномика, которая проводит секвенирование, картирование и идентификацию функций генов и внегенных элементов. Методы геномики направлены на расшифровку новых закономерностей биологических систем и процессов. Геномика человека является основой молекулярной медицины и имеет важнейшее значение для разработки методов диагностики, лечения и профилактики наследственных и ненаследственных болезней. Для медицины первостепенное значение имеют исследования в области геномики патогенных микроорганизмов, поскольку они проливают свет на природу инфекционного процесса и создание лекарств, направленных на специфические мишени бактерий.

Геномика, несмотря на её «молодой возраст», подразделяется на несколько почти самостоятельных направлений: структурную, функциональную, сравнительную, эволюционную, медицинскую геномику.

Структурная геномика изучает последовательность нуклеотидов в геномах, определяет границы и строение генов, межгенных участков и других структурных генетических элементов (промоторов, энхансеров и т.д.), т.е. составляет генетические, физические и транскриптные карты организма.

Функциональная геномика. Исследования в области функциональной гено-мики направлены на идентификацию функций каждого гена и участка генома, их взаимодействие в клеточной системе. Очевидно, это будет осуществляться путём изучения белковых ансамблей в разных клетках. Эту область исследований называют протеомикой.

Сравнительная геномика изучает сходства и различия в организации геномов разных организмов с целью выяснения общих закономерностей их строения и функционирования.

Эволюционная геномика объясняет пути эволюции геномов, происхождение генетического полиморфизма и биоразнообразия, роль горизонтального переноса генов. Эволюционный подход к изучению генома человека позволяет проследить за длительностью формирования комплексов генов, отдельных хромосом, стабильностью его частей, недавно обнаруженными элементами «непостоянства» генома, процессом расообразования, эволюцией наследственной патологии.

Медицинская геномика решает прикладные вопросы клинической и профилактической медицины на основе знания геномов человека и патогенных организмов (например, диагностика наследственных болезней, генотерапия, причины вирулентности болезнетворных микроорганизмов и т.д.).

Все шаги эволюции живой природы, несомненно, должны были закрепляться в информационной системе ДНК (а для некоторых существ - в РНК), а также в организации её в клетке для выполнения консервативной функции сохранения наследственности и противоположной функции - поддержания изменчивости. Такое представление о формировании генома каждого вида наиболее обоснованно. Применительно к геному человека можно сказать, что эволюция человека - это эволюция генома. Такое представление подтверждается теперь многочисленными молекулярно-генетическими исследованиями, поскольку стало возможным сопоставление геномов разных видов млекопитающих, в том числе человекообразных обезьян, а также в пределах вида Homo sapiens геномов разных рас, этносов, популяций человека и отдельных индивидов.

Организация генома каждого эукариотического вида представляет собой последовательную иерархию элементов: нуклеотидов, кодонов, доменов, генов с межгенными участками, сложных генов, плеч хромосом, хромосом, гаплоидного набора вместе с внехромосомной и внеядерной ДНК. В эволюционном преобразовании генома каждый из этих иерархических уровней мог вести себя совершенно дискретно (изменяясь, комбинируясь с другими и т.д.).

Наши представления о геноме человека - обширная область генетики человека, включающая по меньшей мере понятия «инвентаризации» генов, групп сцепления, картирования генов (локализация), секвенирования всей ДНК (генов, их мутаций и хромосом в целом), мейотических преобразований, функционирования отдельных генов и их взаимодействий, интеграции структуры и функции генома в целом. На решении всех этих вопросов была сосредоточена обширная многолетняя международная программа «Геном человека» (с 1990 по 2000 г.). Главным направлением работ были последовательное секвенирование участков генома и их «состыковка». Успешные разработки в этой области придали программе клинико-генетический аспект.

Клинические приложения сведений о геноме человека

Систематическое изучение генома человека фактически началось с применения менделевского анализа наследственных признаков человека (начало XX века). Генеалогический метод вошел тогда в широкую практику, и шаг за шагом стал накапливаться материал по «инвентаризации» дискретных наследственных признаков человека, но этот процесс постепенно замедлялся (за 50 лет было открыто не более 400 менделирующих признаков и 4 группы сцепления), возможности клинико-генеалогического метода в чистом виде были исчерпаны.

Бурный прогресс цитогенетики человека, биохимической генетики и особенно генетики соматических клеток в 60-х годах в комплексе с генеалогическим подходом поставил изучение генома человека на новые теоретические основы и высокий методический уровень. Обнаружение новых менделирующих признаков человека стало быстро продвигаться, особенно на биохимическом и иммунологическом уровне, появились возможности изучения сцепления и локализации генов.

Особый импульс изучению генома человека придали молекулярно-генетические методы, или технология генной инженерии (70-е годы). Процесс познания генома углубился до выделения гена в чистом виде и его секвенирования.

В отличие от классической, в новой генетике изменился подход к анализу генов. В классической генетике последовательность была следующей: идентификация менделирующего признака -> локализация гена в хромосоме (или группе сцепления) -> первичный продукт гена -> ген. В современной генетике стал возможным и обратный подход: выделение гена -> секвенирование -> первичный продукт, в связи с чем был введён новый термин для определения такого направления исследований: «обратная генетика» или «генетика наоборот».

Продолжаются совершенствование молекулярно-генетических методов и, что не менее важно, их автоматизация. В США и Великобритании были разработаны и внедрены автоматические приборы по секвенированию геномов. Их назвали геномотронами. В них осуществляется до 100 000 полимеразных реакций в час. Это означает, что в течение недели может быть просеквенирован участок (или участки) длиной в несколько миллионов пар нуклеотидов.

Большую роль в расшифровке генома человека играют вычислительная техника и информационные системы. Благодаря им решаются вопросы накопления информации (базы данных) из разных источников, хранения её и оперативного использования исследователями из разных стран.

Медицинская генетика – направление, посвященное наследственности, наследственным патологиям и здоровью, лечению и профилактике генетических заболеваний, а также проблемам наследственной передачи предрасположенности к болезням.

Что таке генетика?

Важной частью медицинской генетики является клиническая генетика, чьей задачей является обнаружение, и профилактика наследственной патологии.

Трудно переоценить роль генетики в современной медицине. Как выяснилось, она огромна, и даже те немалые знания, которые накоплены в этой области к настоящему времени, представляют собой, по мнению ученых, лишь вершину айсберга.

Так, врачами, проводящими , было установлено, что многие виды рака наследственно обусловлены, в частности:

  • лейкоз;
  • большинство онкологических заболеваний детского возраста;
  • и др.

Новые технологии, дары научно-технического прогресса, открыли новые возможности для генетики, и из преимущественно теоретической дисциплины она стала прикладной. Расшифровка генома человека открыла возможность вмешательства в геном, исключения одних генов и активации других – вот то направление, в котором развивается медицинская генетика.

Одно из важных направлений, которым занимается генетика – репродукция. Столь популярный метод лечения бесплодия, как ЭКО, который прочно вошел в медицинскую практику, тоже стал возможным благодаря развитию медицинской генетики. Кроме того, при всегда проводится генетическая диагностика при наличии показаний у пациента.

Методы зарубжной генетики

Существуют следующие методы генетики человека:

  • Генеалогический. Метод состоит в отслеживании и изучении родословных, позволяет определять закономерности, по которым наследуются те или иные признаки, в том числе и те, что отвечают за наследственно-обусловленные болезни.
  • Близнецовый. Метод изучает влияние среды на генотип человека при помощи сравнения однояйцевых близнецов, проживающих в разных условиях.
  • Цитогенетический. Метод, состоящий в микроскопическом исследовании хромосом. С его помощью определяются хромосомные заболевания (например, один из вариантов синдрома Дауна).
  • Секвестрирование. Метод, состоящий в изучении ДНК человека на молекулярном уровне.
  • Дерматоглифический. Метод основывается на изучении рельефа кожи пальцев, ладоней и стоп. С его помощью диагностируется ряд наследственных патологий.
  • Биохимический. Используется для исследования наследственно-обусловленных заболеваний обмена веществ, в основе которых лежат ферментные нарушения.
  • Популяционно-статистический метод – изучение закономерностей наследственных признаков в больших группах населения.

Генетическая диагностика за рубежом

Консультация генетика включает в себя генетическую диагностику. Генетический анализ позволяет определить не только возможность появления наследственных болезней, но и предрасположенности к целому ряду распространенных заболеваний.

Для проведения генетического анализа берется кровь (5 мл), кроме того, проводится тщательное изучение анамнеза пациента – это нужно для того, чтобы правильно интерпретировать полученные результаты.

Чаще всего люди обращаются в генетический центр или или любой другой стране при наличии определенных подозрений на возможную наследственную патологию, при наличии такой патологии у одного из членов семьи (в том числе и рожденного ребенка) и во время беременности, при наличии определенных показаний.

Генетическая диагностика у беременных, при обоснованных подозрениях на возможность наследственно-обусловленной патологии, проводится в том числе и инвазивными методами:

Лечение генетических заболеваний за границей

Генетика за рубежом, благодаря наличию ультрасовременного оборудования и подготовленных специалистов, имеет большие возможности в диагностике наследственной патологии всех видов. В отделение генетики пациенты обращаются как по направлению врача при наличии определенных показаний (например, семьи, планирующие ребенка, при наличии подтвержденной генетической патологии у уже рожденных детей) или по собственному желанию.

Независимо от того, будет ли это крупный институт генетики, центр генетики или отделение генетики, пациент получит квалифицированную помощь в полном объеме.

Каждый медико-диагностический центр, занимающийся ЭКО, также располагает возможностью генетической диагностики по современным стандартам – вот почему среди детей, рожденных при помощи искусственного оплодотворения, практически нет тех, кто страдал бы наследственными заболеваниями.

Стоимость лечения в центрах генетики за границей

Если вам нужна консультационная помощь по вопросам генетики, сайт UNIMED предлагает заполнить вам контактную форму и связаться с нами. Мы предоставим Вам исчерпывающую информацию, в том числе и касательно возможной стоимости генетической диагностики и лечения. Также на этом портале вы можеет узнать официальные и других странах.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение в геномику. Геном человека, основные черты организации. Методы изучения генома человека

Значение программы изучения генома человека для практической медицины.

21 век - это эра геномики - время, когда последовательность ДНК в геноме человека определена почти полностью, время, когда анализируется роль тысяч генов человека в норме и при болезнях. Наступает время персонифицированной медицины - когда изучение небольших вариаций во многих генах приведет к выявлению индивидуальной предрасположенности человека к той или иной патологии.

Важнейшие события генетики 20 века, инициирующие изучение генома:

Открытие двойной спирали ДНК (Дж. Уотсон, Фр. Крик, 1953)

Разработка метода секвенирования ДНК - 1997 г.

Выделение эмбриональных стволовых клеток человека (1998)

Решающим достижением молекулярной биологии стала разработка методов секвенирования ДНК в 1977 г.

Международный проект Геном человека официально стартовал в 1990 году. Огромный вклад внесли ученые 6 стран - США, Великобритании, Франции, Германии, Японии и Китая. К 2001 г. просеквенировано 90% с точностью 99,99%. К 2003 г. секвенировано 99% генома человека. Осталось около 400 брешей.

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК.

Двадцать две аутосомные хромосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд. пар оснований .

Полное секвенирование выявило, что человеческий геном содержит 20--25 тыс. активных генов , что значительно меньше, чем ожидалось в начале проекта (порядка 100 тыс.) -- то есть только 1,5 % всего генетического материала кодирует белки. Остальная часть (97%) является некодирующей ДНК, которую часто называют мусорной ДНК . Геном человека -- совокупность наследственного материала, заключенного в клетке человека.

Вообще слово «геном» относится к общему содержанию ДНК у данного вида, включая не только гены, но и всю остальную ДНК. У человека, например, на долю кодирующих белки последовательности приходится только 1,25% всего генома. Что же представляет человеческий геном?

На долю интронов приходится до 20-25%. Но значительную часть межгенной ДНК занимают регуляторные последовательности.

Классификации генов:

Гены активные и репрессированные

Основная масса генов, активно функционирующих в большинстве клеток организма на протяжении онтогенеза,-- это гены, которые обеспечивают синтез белков общего назначения (белки рибосом, гистоны, тубулины и т. д.), тРНК и рРНК. Такие гены называют конститутивными. Работа другой группы генов, контролирующих синтез специфических белков, зависит от различных регулирующих факторов. Их называют регулируемыми генами. Изменение условий может привести к активации «молчащих» генов и репрессии активных. Дифференцированная экспрессия генома у млекопитающих обусловливает развитие огромного множества типов тканей.

Кодирующие белки и РНК

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома .

Кроме кодирующих белок генов человеческий геном содержит тысячи РНК-генов, включая транспортную РНК (tRNA), рибосомную РНК, микро РНК (microRNA) и прочие не кодирующие белок РНК последовательности.

Структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка.

Гены «домашнего хозяйства» и гены «роскоши».

Все гены разделяют на гены "домашнего хозяйства" и гены "роскоши".

Гены "домашнего хозяйства" кодируют то, что всегда нужно любой клетке независимо от ткани. Гены «домашнего хозяйства» (housekeeping genes) -- это гены, необходимые для поддержания важнейших жизненных функций организма, которые экспрессируются практически во всех тканях и клетках на относительно постоянном уровне. Гены домашнего хозяйства функционируют повсеместно, на всех стадиях жизненного цикла организма.

По разным оценкам таких генов у человека 10-20 тыс. Это гистоновые гены, гены tРНК, rРНК и т.п.

Гены "роскоши", которых заведомо больше в 2-3 раза, это гены, которые экспрессируются в клетках определенных тканей и в определенное время. Например, все гены белковых гормонов - гены "роскоши".

Регуляторные последовательности -- последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.

В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию гена. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры).

Сайленсер (англ. Silencer) -- последовательность ДНК, с которой связываются белки-репрессоры (факторы транскрипции). Связывание белков-репрессоров с сайленсерами приводит к понижению или к полному подавлению синтеза РНК.

Инсулляторы

Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК в виде 2-6 кольцевых молекул. Хромосомы человека. Размер хромосом варьирует от 45 миллионов до 280 миллионов пн.

Хромосома не гомогенна. В ней чередуются участки эухроматина (не плотные участки) и гетерохроматина (более плотный). При дифференциальной окраске по длине хромосомы выявляется ряд окрашенных (гетерохроматин) и неокрашенных (эухроматин) полос. Характер поперечной исчерченности, получаемый при этом, позволяет идентифицировать каждую хромосому в наборе, так как чередование полос и их размеры строго индивидуальны и постоянны для каждой пары.

ЭУХРОМАТИН, вещество хромосомы, сохраняющее деспирализованное (диффузное) состояние в покоящемся ядре и спирализующееся при делении клеток. Содержит большинство структурных генов организма.Гетерохроматин - протяженные участки повторяющихся и высоко конденсированных последовательностей, которые не кодируют никаких белков.

Классификация гетерохроматина:

Факультативный (В зависимости от стадий клеточного цикла, типа клеток, один и тот же участок хромосомы может быть в состоянинии как гетеро-, так и эухроматина. Такие участки хромосом называют факультативным гетерохроматином.

Конститутивный (околоцентромерный, теломерный) Участки, которые всегда уплотнены. Эти участки хромосом содержат тандемно повторяющуюся ДНК (расположенные друг за другом «голова к хвосту»).

Околоцентромерный гетерохроматин состоит из коротких тандемных повторов длиной до 20 п.о., организованных в длинные блоки (по 100-200 тандемов). Блоки образуют ряды длиной от 250 тыс. до 5 млн. пн. Такой тип ДНК называется сателлитной, альфоидной (альфа-сателлитной). Составляют 3% генома. В местах расположения сателлитной ДНК возможна максимальная компактизация, все четыре уровня упаковки ДНК представлены даже в интерфазе. По сателлитной ДНК происходит кроссинговер между гомологичными хромосомами.

Теломемры (от др.-греч. фЭлпт -- конец и мЭспт -- часть) -- минисателлиты - концевые участки хромосом. У большинства эукариот теломеры состоят из коротких тандемных повторов.и содержат тысячи 6-нуклеотидных повторов: у человека - TTAGGG, (для сравнения у всех насекомых -- TTAGG, у растений -- TTTAGGG). Они повторяются от 250 до 1500 раз.

С теломерами связано несколько белков, образующих защитный «колпачок» - теломерный комплекс, который предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы и защищая всю хромосому от разрушения. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию.

В каждом цикле деления теломеры клетки укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого конца. ДНК-полимераза может начать синтез цепи только с РНК-праймера. После окончания синтеза ДНК РНК-праймеры на отстающей цепи удаляются, а пропуски заполняются ДНК-полимеразой. Однако на конце цепи такой пропуск заполняться не может. Поэтому 3" участки ДНК остаются однонитевыми, а 5"недореплицированными. Следовательно, КАЖДЫЙ РАУНД РЕПЛИКАЦИИ БУДЕТ ПРИВОДИТЬ К УМЕНЬШЕНИЮ КОНЦОВ ХРОМОСОМЫ. Данный феномен носит название концевой недорепликации и является одним из важнейших факторов биологического старения. Так, у новорожденного длина теломер варьирует около 15 тысяч пн при хронических заболеваниях снижается до 5 т.н.п. Ученые из университета Кардиффа (Cardiff University) установили, что критическая длина человеческой теломеры, при которой хромосомы начинают соединяться друг с другом, составляет 12-13 теломерных повторов .

При таком критическом укорочении теломер нарушается структура хромосом, могут повреждаться прилегающие гены и начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние покоя - необратимой остановки клеточного цикла. В результате клетка может умереть или перестать делиться. Это происходит в большинстве нормальных соматических клеток, которые имеют ограниченную способность к размножению. В состояние такого покоя клетку могут привести многие стимулы -- дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др.

Однако в зародышевых, половых и стволовых клетках имеется специальный фермент - теломераза, способный восстанавливать теломерные последовательности, которые укорачиваются при каждом акте репликации.

Защитные механизмы концевой недорепликации.

Существует специальный фермент -- теломераза (РНК+белок), который при помощи собственной РНК-матрицы достраивает теломерные повторы и удлиняет теломеры. В большинстве дифференцированных клеток теломераза заблокирована, однако активна в стволовых и половых клетках.

Считается, что реактивация теломеразы -- важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит пролиферации. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что чаще всего приводит к злокачественным новообразованиям. Активные теломеразы обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. Поэтому в настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы.

За открытие защитных механизмов хромосом от концевой недорепликации с помощью теломер и теломеразы в 2009 году присуждена Нобелевская премия по физиологии и медицине австралийке, работающей в США, Элизабет Блекберн (Elizabeth Blackburn), американке Кэрол Грейдер (Carol Greider) и её соотечественнику Джеку Шостаку (Jack Szostack).

Кроме того, в последние годы теломерная ДНК стала предметом пристального изучения из за того, что была обнаружена связь между укорочением теломер и старением.

Другие классы тандемных повторов являются генами для РНК, например, рибосомальной. Эти гены локализованы в ЯОР 5 пар акроцентрических хромосом.

Другая группа повторов - диспергированные повторяющиеся последовательности, которые разбросаны по всему геному по отдельности, а не тандемно. Они являются подвижными (мобильными) генетическими элементами - ретротранспозонами. 15% генома занимают длинные диспергированные элементы - LINE, 12% - короткие SINE. Эти последовательности производят ферменты - эндонуклеазы, способные делать надрезы в ДНК и встраивать туда свои последовательности. Встраивание МГЭ в ДНК способно нарушить функцию гена. У человека известно около 30 ретротранспозиций, вызывающих болезни. Почему же геном не избавляется от таких опасных участков? Повторяющиеся последовательности и МГЭ являются важным источником ремоделирования генома.

Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.

Все гены по функциям подразделяются на структурные и функциональные.

Структурные гены несут информацию о строении белков и РНК.

Среди функциональных генов выделяют:

гены-модуляторы, усиливающие или ослабляющие работу структурных генов (супрессоры (ингибиторы), активаторы, модификаторы);

гены, регулирующие работу структурных генов (регуляторы и операторы).

геном недорепликация белок

Размещено на Allbest.ru

...

Подобные документы

    Генетическая терминология, организация генома вирусов, понятие о лизогенном и литическом цикле. Особенности генома и жизненного цикла ретровирусов, геном бактерий. Современные представления о геноме человека: теоретические и практические аспекты.

    презентация , добавлен 04.04.2011

    Определение нуклеотидной последовательности генома человека. Идентификация генов на основе физического, хромосомного и функционалного картирования, клонирования и секвенирования. Новая отрасль биологии - протеомика. Изучение структуры и функции белков.

    лекция , добавлен 21.07.2009

    Организация генома и кодируемые белки вируса иммунодефицита человека. Транскрипция провирусной дезоксирибонуклеиновой кислоты и синтез вирусных веществ. Анализ получения сыворотки и плазмы крови. Характеристика референсных сиквенсов и электрофореграмм.

    дипломная работа , добавлен 04.06.2017

    Классификация и свойства генов, особенности структурных и регуляторных генов. Структурные единицы наследственности организмов. Особенности генома человека. Наследственный материал, заключенный в клетке человека. Уровни структурной организации хромосом.

    презентация , добавлен 28.10.2014

    Амплификация как важный механизм увеличения объема генома. Роль горизонтального переноса генетического материала в эволюции генома. Значение сохранения дозового баланса генов в генотипе для формирования фенотипа. Взаимодействия между генами в генотипе.

    реферат , добавлен 24.02.2010

    Определение возможности развития заболеваний с наследственной предрасположенностью. Создание международной программы "Геном человека". Электромагнитная среда обитания человека. Оценка риска, связанного с использованием ГМО в продуктах питания человека.

    реферат , добавлен 01.03.2012

    Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа , добавлен 08.11.2009

    Общие черты методов изучения наследственности человека, наследственные заболевания и их профилактика. Природа материальных носителей наследственности, механизмы их проявления и изменения. Генеалогический, близнецовый и цитогенический методы исследования.

    курсовая работа , добавлен 06.10.2010

    Строение молекулы ДНК. Ферменты генетической инженерии. Характеристика основных методов конструирования гибридных молекул ДНК. Введение молекул ДНК в клетку. Методы отбора гибридных клонов. Расшифровка нуклеотидной последовательности фрагментов ДНК.

    реферат , добавлен 07.09.2015

    Кодирование информации в анализаторах. Слуховой анализатор: информация звукового стимула в виде нейронного возбуждения. Обезболивающая (антиноцицептивная) система. Роль генома в пластических изменениях нервной ткани. Физиологическое значение эмоций.

Похожие публикации