Принцип наименьшего действия. Наименьшего действия принцип Что такое принцип наименьшего действия в физике

Наиболее общая формулировка закона движения механических систем дается так называемым принципом наименьшего действия (или принципом Гамильтона). Согласно этому принципу каждая механическая система характеризуется определенной функцией

или, в краткой записи, причем движение системы удовлетворяет следующему условию.

Пусть в моменты времени система занимает определенные положения, характеризуемые двумя наборами значений координат (1) и Тогда между этими положениями система движется таким образом, чтобы интеграл

имел наименьшее возможное значение. Функция L называется функцией Лагранжа данной системы, а интеграл (2.1) - действием.

Тот факт, что функция Лагранжа содержит только q и q, но не более высокие производные является выражением указанного выше утверждения, что механическое состояние полностью определяется заданием координат и скоростей.

Перейдем к выводу дифференциальных уравнений, решающих задачу об определении минимума интеграла (2,1). Для упрощения записи формул предположим сначала, что система обладает всего одной степенью свободы, так что должна быть определена всего одна функция

Пусть есть как раз та функция, для которой S имеет минимум. Это значит, что S возрастает при замене на любую функцию вида

где - функция, малая во всем интервале времени от до (ее называют вариацией функции поскольку при все сравниваемые функции (2,2) должны принимать одни и те же значения то должно быть:

Изменение 5 при замене q на дается разностью

Разложение этой разности по степеням (в подынтегральном выражении) начинается с членов первого порядка. Необходимым условием минимальности S) является обращение в нуль совокупности этих членов; ее называют первой вариацией (или обычно просто вариацией) интеграла. Таким образом, принцип наименьшего действия можно записать в виде

или, произведя варьирование:

Замечая, что проинтегрируем второй член по частям и получим:

Но в силу условий (2,3) первый член в этом выражении исчезает. Остается интеграл, который должен быть равен нулю при произвольных значениях . Это возможно только в том случае, если подынтегральное выражение тождественно обращается в нуль. Таким образом, мы получаем уравнение

При наличии нескольких степеней свободы в принципе наименьшего действия должны независимо варьироваться s различных функций Очевидно, что мы получим тогда s уравнений вида

Это - искомые дифференциальные уравнения; они называются в механике уравнениями Лагранжа. Если функция Лагранжа данной механической системы известна, то уравнения (2,6) устанавливают связь между ускорениями, скоростями и координатами, т. е. представляют собой уравнения движения системы.

С математической точки зрения уравнения (2,6) составляют систему s уравнений второго порядка для s неизвестных функций . Общее решение такой системы содержит произвольных постоянных. Для их определения и тем самым полного определения движения механической системы необходимо знание начальных условий, характеризующих состояние системы в некоторый заданный момент времени, например знание начальных значений всех координат и скоростей.

Пусть механическая система состоит из двух частей А и В, каждая из которых, будучи замкнутой, имела бы в качестве функции Лагранжа соответственно функции ? Тогда в пределе, при разведении частей настолько далеко, чтобы взаимодействием между ними можно было пренебречь, лагранжева функция всей системы стремится к пределу

Это свойство аддитивности функции Лагранжа выражает собой тот факт, что уравнения движения каждой из невзаимодействующих частей не могут содержать величины, относящиеся к другим частям системы.

Очевидно, что умножение функции Лагранжа механической системы на произвольную постоянную само по себе не отражается на уравнениях движения.

Отсюда, казалось бы, могла вытекать существенная неопределенность: функции Лагранжа различных изолированных механических систем могли бы умножаться на любые различные постоянные. Свойство аддитивности устраняет эту неопределенность, - оно допускает лишь одновременное умножение лагранжевых функций всех систем на одинаковую постоянную, что сводится просто к естественному произволу в выборе единиц измерения этой физической вели чины; мы вернемся еще к этому вопросу в § 4.

Необходимо сделать еще следующее общее замечание. Рассмотрим две функции отличающиеся друг от друга на полную производную по времени от какой-либо функции координат и времени

Вычисленные с помощью этих двух функций интегралы (2,1) связаны соотношением

т. e. отличаются друг от друга дополнительным членом, исчезающим при варьировании действия, так что условие совпадает с условием и вид уравнений движения остается неизменным.

Таким образом, функция Лагранжа определена лишь с точностью до прибавления к ней полной производной от любой функции координат и времени.

НАИМЕНЬШЕГО ДЕЙСТВИЯ ПРИНЦИП

Один из вариационных принципов механики, согласно к-рому для данного класса сравниваемых друг с другом движений механич. системы действительным является то, для которого физ. величина, наз. действием, имеет наименьшее (точнее, стационарное) значение. Обычно Н. д. п. применяется в одной из двух форм.

а) Н. д. п. в форме Гамильтона - Остроградского устанавливает, что среди всех кинематически возможных перемещений системы из одной конфигурации в другую (близкую к первой), совершаемых за один и тот же промежуток времени, действительным является то, для к-рого действие по Гамильтону S будет наименьшим. Матем. выражение Н. д. п. имеет в этом случае вид: dS=0, где d - символ неполной (изохронной) вариации (т. е. в отличие от полной вариации в ней время не варьируется).

б) Н. д. п. в форме Мопертюи - Лагранжа устанавливает, что среди всех кинематически возможных перемещений системы из одной конфигурации в близкую к ней другую, совершаемых при сохранении одной и той же величины полной энергии системы, действительным является то, для к-рого действие по Лагранжу W будет наименьшим. Матем. выражение Н. д. п. в этом случае имеет вид DW=0, где D - символ полной вариации (в отличие от принципа Гамильтона - Остроградского, здесь варьируются не только координаты и скорости, но и время перемещения системы из одной конфигурации в другую). Н. д. п. в. этом случае справедлив только для консервативных и притом голономных систем, в то время как в первом случае Н. д. п. является более общим и, в частности, может быть распространён на неконсервативные системы. Н. д. п. пользуются для составления ур-ний движения механич. систем и для исследования общих св-в этих движений. При соответствующем обобщении понятий Н. д. п. находит приложения в механике непрерывной среды, в электродинамике, квант. механике и др.

  • - то же, что...

    Физическая энциклопедия

  • - m-оператор, оператор минимизаци и,- способ построения новых функций из других функций, состоящий в следующем...

    Математическая энциклопедия

  • - один из вариационных принципов механики, согласно к-рому для данного класса сравниваемых друг с другом движений механич. системы осуществляется то, для к-рого действие минимально...

    Естествознание. Энциклопедический словарь

  • - один из важнейших законов механики, установленный русским ученым М.В. Остроградским...

    Русская энциклопедия

  • Словарь юридических терминов

  • - в конституционном праве ряда государств принцип, согласно которому общепризнанные принципы и нормы международного права являются составной частью правовой системы соответствующей страны...

    Энциклопедия юриста

  • - в конституционном праве ряда государств принцип, согласно которому общепризнанные нормы международного права являются составной частью национальной правовой системы...

    Большой юридический словарь

  • - кратчайшее расстояние от центра заряда взрывчатого вещества до свободной поверхности - линия на най-малкото съпротивление - křivka nejmenšího odporu - Linie der geringsten Festigkeit - robbantás minimális ellenállási tengelyvonala - хамгийн бага...

    Строительный словарь

  • - при возможности перемещения точек деформируемого тела в разных направлениях каждая точка этого тела перемещается в направлении наименьшего сопротивления...

    Энциклопедический словарь по металлургии

  • - правило, по которому имеющиеся запасы принято оценивать либо по наименьшей себестоимости или по наименьшей цене продажи...

    Словарь бизнес терминов

  • - в конституционном праве ряда государств - принцип, согласно которому общепризнанные принципы и нормы международного права являются составной частью правовой системы соответствующего государства и действуют...

    Энциклопедический словарь экономики и права

  • - один из вариационных принципов механики, согласно которому для данного класса сравниваемых друг с другом движений механической системы действительным является то, для которого физическая величина,...
  • - то же, что Гаусса принцип...

    Большая Советская энциклопедия

  • - один из вариационных принципов механики; то же, что Наименьшего действия принцип...

    Большая Советская энциклопедия

  • - один из вариационных принципов механики, согласно которому для данного класса сравниваемых друг с другом движений механической системы осуществляется то, для которого действие минимально...

    Большой энциклопедический словарь

  • - Книжн. Выбирать наиболее лёгкий способ действия, избегая препятствий, уклоняясь от трудностей...

    Фразеологический словарь русского литературного языка

"НАИМЕНЬШЕГО ДЕЙСТВИЯ ПРИНЦИП" в книгах

2.5.1. Принцип действия устройства

Из книги Занимательная электроника [Нешаблонная энциклопедия полезных схем] автора Кашкаров Андрей Петрович

2.5.1. Принцип действия устройства Принцип действия устройства прост. Когда световой поток, излучаемый светодиодом HL1, отражается от объекта и попадает на фотоприемник, электронный узел, реализованный на 2 микросхемах – компараторе КР1401СА1 и таймере КР1006ВИ1, вырабатывает

Принцип действия терафима

Из книги Сокровенное знание. Теория и практика Агни Йоги автора Рерих Елена Ивановна

Принцип действия терафима 24.02.39 Вы знаете, что каждое осознание и представление какого-либо объекта тем самым приближает нас к нему. Как Вы знаете, психические наслоения объекта могут быть перенесены на его терафим. Особенно важны астральные терафимы дальних миров и

Три условия для действия Закона Наименьшего Усилия

Из книги Мудрость Дипака Чопры [Обрети желаемое, следуя 7 законам Вселенной] автора Гудмен Тим

Три условия для действия Закона Наименьшего Усилия Давайте посмотрим, какие условия требуются для привлечения в вашу жизнь этого созидательного потока энергии Вселенной - энергии любви, а значит, и для того, чтобы Закон Наименьшего Усилия начал работать в вашей

Глава 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ

Из книги 6. Электродинамика автора Фейнман Ричард Филлипс

Глава 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ Добавление, сделанное после лекцииКогда я учился в школе, наш учитель фи­зики, по фамилии Бадер, однажды зазвал меня к себе после урока и сказал: «У тебя вид такой, как будто тебе все страшно надоело; послу­шай-ка об одной интересной

5. Принцип наименьшего действия

Из книги Революция в физике автора де Бройль Луи

5. Принцип наименьшего действия Уравнения динамики материальной точки в поле сил, обладающих потенциалом, можно получить, исходя из принципа, который в общем виде носит название принципа Гамильтона, или принципа стационарного действия. Согласно этому принципу, из всех

Принцип действия

Из книги Руководство слесаря по замкам автора Филипс Билл

Принцип действия Возможность поворота цилиндра зависит от положения пинов, которое в свою очередь определяется силой тяжести, действием пружин и усилием ключа (или отмычки; информацию об отмычках см. в главе 9). При отсутствии ключа сила тяжести и пружины вдавливают

Стационарного действия принцип

Из книги Большая Советская Энциклопедия (СТ) автора БСЭ

Наименьшего действия принцип

БСЭ

Наименьшего принуждения принцип

Из книги Большая Советская Энциклопедия (НА) автора БСЭ

2.5.1. Принцип действия

Из книги Релейная защита в распределительных электрических Б90 сетях автора Булычев Александр Витальевич

2.5.1. Принцип действия В электрических сетях с двухсторонним питанием и в кольцевых сетях обычные токовые защиты не могут действовать селективно. Например, в электрической сети с двумя источниками питания (рис. 2.15), где выключатели и защиты установлены с обеих сторон

Принцип действия

Из книги Турбо-Суслик. Как прекратить трахать себе мозг и начать жить автора Леушкин Дмитрий

Принцип действия «Обработай это» - это, фактически, своеобразный «макрос», запускающий одной фразой целую кучу процессов в подсознании, целью которых является обработка выбранного ментального материала. В сам этот обработчик входит 7 разных модулей, часть из которых

Как начать следовать Закону Наименьшего Усилия: три необходимых действия

Из книги Руководство по выращиванию капитала от Джозефа Мэрфи, Дейла Карнеги, Экхарта Толле, Дипака Чопры, Барбары Шер, Нила Уолша автора Штерн Валентин

Как начать следовать Закону Наименьшего Усилия: три необходимых действия Чтобы Закон Наименьшего Усилия начал работать, нужно не только соблюдать названные выше три условия, но еще и выполнить три действия.Первое действие: начните принимать мир таким как естьПринимать

11. Физика и айкидо наименьшего действия

автора Минделл Арнольд

11. Физика и айкидо наименьшего действия Когда дует, то есть только ветер. Когда идет дождь, есть только дождь. Когда идут облака, сквозь них светит солнце. Если ты открываешься прозрению, то ты заодно с прозрением. И можешь использовать его полностью. Если ты открываешься

Принцип наименьшего действия Лейбница «Vis Viva»

Из книги Геопсихология в шаманизме, физике и даосизме автора Минделл Арнольд

Принцип наименьшего действия Лейбница «Vis Viva» За принцип наименьшего действия мы все должны быть благодарны Вильгельму Готфриду Лейбницу (1646–1716). Один из первых «современных» физиков и математиков, Лейбниц жил во временя Ньютона - в эпоху, когда ученые более открыто

Айкидо - воплощение принципа наименьшего действия

Из книги Геопсихология в шаманизме, физике и даосизме автора Минделл Арнольд

Айкидо - воплощение принципа наименьшего действия Наши психология и технология в значительной степени движимы концепцией, весьма близкой к идее наименьшего действия. Мы постоянно стараемся облегчить себе жизнь. Сегодняшние компьютеры недостаточно быстрые; они должны

Ему подчиняются, в связи с чем этот принцип является одним из ключевых положений современной физики. Получаемые с его помощью уравнения движения имеют название уравнений Эйлера - Лагранжа .

Первую формулировку принципа дал П. Мопертюи (P. Maupertuis) в году, сразу же указав на его универсальную природу, считая его приложимым к оптике и механике. Из данного принципа он вывел законы отражения и преломления света.

История

Мопертюи пришёл к этому принципу из ощущения, что совершенство Вселенной требует определенной экономии в природе и противоречит любым бесполезным расходам энергии. Естественное движение должно быть таким, чтобы сделать некоторую величину минимальной. Нужно было только найти эту величину, что он и продолжал делать. Она являлась произведением продолжительности (время) движения в пределах системы на удвоенную величину, которую мы теперь называем кинетической энергией системы.

Эйлер (в «Réflexions sur quelques loix générales de la nature» , 1748) принимает принцип наименьшего количества действия, называя действие «усилием». Его выражение в статике соответствует тому, что мы теперь назвали бы потенциальной энергией , так что его утверждение наименьшего действия в статике эквивалентно условию минимума потенциальной энергии для конфигурации равновесия.

В классической механике

Принцип наименьшего действия служит фундаментальной и стандартной основой лагранжевой и гамильтоновой формулировок механики.

Вначале рассмотрим построение таким образом лагранжевой механики . На примере физической системы с одной степенью свободы , напомним, что действие - это функционал относительно (обобщенных) координат (в случае одной степени свободы - одной координаты ), то есть выражается через так, что каждому мыслимому варианту функции сопоставляется некоторое число - действие (в этом смысле можно сказать, что действие как функционал есть правило, позволяющее для любой заданной функции вычислить вполне определенной число - также называемое действием). Действие имеет вид:

где есть лагранжиан системы, зависящий от обобщённой координаты , её первой производной по времени , а также, возможно, и явным образом от времени . Если система имеет большее число степеней свободы , то лагранжиан зависит от большего числа обобщённых координат и их первых производных по времени. Таким образом, действие является скалярным функционалом, зависящим от траектории тела.

То, что действие является скаляром, позволяет легко записать его в любых обобщенных координатах, главное только, чтобы положение (конфигурация) системы однозначно ими характеризовалось (например, вместо декартовых это могут быть полярные координаты, расстояния между точками системы, углы или их функции и т. д.).

Действие можно вычислить для совершенно произвольной траектории , какой бы «дикой» и «неестественной» она бы ни была. Однако в классической механике среди всего набора возможных траекторий существует одна-единственная, по которой тело действительно пойдёт. Принцип стационарности действия как раз и даёт ответ на вопрос, как действительно будет двигаться тело:

Это значит, что если задан лагранжиан системы, то мы с помощью вариационного исчисления можем установить, как именно будет двигаться тело, сначала получив уравнения движения - уравнения Эйлера - Лагранжа , а затем решив их. Это позволяет не только серьёзно обобщить формулировку механики, но и выбирать наиболее удобные координаты для каждой определенной задачи, не ограничиваясь декартовыми, что может быть очень полезно для получения наиболее простых и легко решаемых уравнений.

где - функция Гамильтона данной системы; - (обобщенные) координаты, - сопряженные им (обобщенные) импульсы, характеризующие вместе в каждый данный момент времени динамическое состояние системы и, являясь каждое функцией времени, характеризуя, таким образом, эволюцию (движение) системы. В этом случае для получения уравнений движения системы в форме канонических уравнений Гамильтона надо проварьировать записанное так действие независимо по всем и .

Необходимо заметить, что если из условий задачи принципиально можно найти закон движения, то это автоматически не означает, что можно построить функционал, принимающий стационарное значение при истинном движении. Примером может служить совместное движение электрических зарядов и монополей - магнитных зарядов - в электромагнитном поле . Их уравнения движения невозможно вывести из принципа стационарности действия. Аналогично некоторые гамильтоновы системы имеют уравнения движения, не выводимые из этого принципа.

Примеры

Тривиальные примеры помогают оценивать использование принципа действия через уравнения Эйлера-Лагранжа. Свободная частица (масса m и скорость v ) в Евклидовом пространстве перемещается по прямой линии. Используя уравнения Эйлера-Лагранжа, это можно показать в полярных координатах следующим образом. В отсутствие потенциала функция Лагранжа просто равна кинетической энергии

в ортогональной системе координат .

В полярных координатах кинетическая энергия, и следовательно, функция Лагранжа становится

Радиальная и угловая компонента уравнений становятся, соответственно:

Решение этих двух уравнений

Здесь - это условная запись бесконечнократного функционального интегрирования по всем траекториям x(t), а - постоянная Планка . Подчеркнём, что в принципе действие в экспоненте появляется (или может появляться) само, при изучении оператора эволюции в квантовой механике, однако для систем, имеющих точный классический (неквантовый) аналог, оно в точности равно обычному классическому действию.

Математический анализ этого выражения в классическом пределе - при достаточно больших , то есть при очень быстрых осцилляциях мнимой экспоненты - показывает, что подавляющее большинство всевозможных траекторий в этом интеграле взаимосокращаются при этом в пределе (формально при ). Для почти любого пути найдется такой путь, на котором набег фазы будет в точности противоположным, и они в сумме дадут нулевой вклад. Не сокращаются лишь те траектории, для которых действие близко к экстремальному значению (для большинства систем - минимуму). Это - чисто математический факт из теории функций комплексного переменного ; на нём, например, основан метод стационарной фазы .

В результате частица в полном согласии с законами квантовой механики движется одновременно по всем траекториям, но в обычных условиях в наблюдаемые значения дают вклад только траектории, близкие к стационарным (то есть классическим). Поскольку квантовая механика переходит в классическую в пределе больших энергий, то можно считать, что это - квантовомеханический вывод классического принципа стационарности действия .

В квантовой теории поля

В квантовой теории поля принцип стационарности действия также успешно применяется. В лагранжеву плотность здесь входят операторы соответствующих квантовых полей. Хотя правильнее тут в сущности (за исключением классического предела и отчасти квазиклассики) говорить не о принципе стационарности действия, а о фейнмановском интегрировании по траекториям в конфигурационном или фазовом пространстве этих полей - с использованием упомянутой только что лагранжевой плотности.

Дальнейшие обобщения

Более широко, под действием понимают функционал, задающий отображение из конфигурационного пространства на множество вещественных чисел и, в общем, он не обязан быть интегралом, потому что нелокальные действия в принципе возможны, по крайней мере, теоретически. Более того, конфигурационное пространство не обязательно является функциональным пространством, потому что может иметь некоммутативную геометрию.

  • 3.1.Научные революции в истории естествознания
  • 3.2. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
  • 3.3. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира
  • 3.4. Химия в механистическом мире
  • 3.5. Естествознание Нового времени и проблема философского метода
  • 3.6. Третья научная революция. Диалектизация естествознания
  • 3.7. Очищение естествознания
  • 3.8. Исследования в области электромагнитного поля и начало крушения механистической картины мира
  • I Естествознание XX века
  • 4.1.Четвертая научная революция. Проникновение в глубь материи. Теория относительности и квантовая механика. Окончательное крушение механистической картины мира
  • 4.2. Научно-техническая революция, ее естественнонаучная составляющая и исторические этапы
  • 4.3. Панорама современного естествознания 4.3.1. Особенности развития науки в XX столетии
  • 4.3.2. Физика микромира и мегамира. Атомная физика
  • 4.3.3. Достижения в основных направлениях современной химии
  • 4.3.4. Биология XX века: познание молекулярного уровня жизни. Предпосылки современной биологии.
  • 4.3.5. Кибернетика и синергетика
  • Раздел III
  • I Пространство и время
  • 1.1.Развитие представлений о пространстве и времени в доньютоновский период
  • 1. 2. Пространство и время
  • 1.3. Дальнедействиеи близкодействие. Развитие понятия «поля»
  • 2.1.Принцип относительности Галилея
  • 2.2. Принцип наименьшего действия
  • 2.3. Специальная теория относительности а. Эйнштейна
  • 1. Принцип относительности: все законы природы оди­ наковы во всех инерциальных системах отсчета.
  • 2.4. Элементы общей теории относительности
  • 3. Закон сохранения энергии в макроскопических процессах
  • 3.1. «Живая сила»
  • 3.2. Работа в механике. Закон сохранения и превращения энергии в механике
  • 3.3. Внутренняя энергия
  • 3.4. Взаимопревращения различных видов энергии друг в друга
  • 4. Принцип возрастания энтропии
  • 4.1. Идеальный цикл Карно
  • 4.2. Понятие энтропии
  • 4.3. Энтропия и вероятность
  • 4.4. Порядок и хаос. Стрела времени
  • 4.5. «Демон Максвелла»
  • 4.6. Проблема тепловой смерти Вселенной. Флуктуационная гипотеза Больцмана
  • 4.7. Синергетика. Рождение порядка из хаоса
  • I Элементы квантовой физики
  • 5.1. Развитие взглядов на природу света. Формула Планка
  • 5.2. Энергия, масса и импульс фотона
  • 5.3. Гипотеза де Бройля. Волновые свойства вещества
  • 5.4. Принцип неопределенности Гейзенберга
  • 5.5. Принцип дополнительности Бора
  • 5.6. Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
  • 5.7. Волны вероятности. Уравнение Шредингера. Принцип причинности в квантовой механике
  • 5.8. Состояния физической системы. Динамические и статистические закономерности в природе
  • 5.9. Релятивистская квантовая физика. Мир античастиц. Квантовая теория поля
  • I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
  • 6.2. Понятие симметрии
  • 6.3. Калибровочные симметрии
  • 6.4. Взаимодействия. Классификация элементарных частиц
  • 6.5. На пути к единой теории поля. Идея спонтанного нарушения симметрии вакуума
  • 6.6. Синергетическое видение эволюции Вселенной. Историзм физических объектов. Физический вакуум как исходная абстракция в физике
  • 6.7. Антропный принцип. «Тонкая подстройка» Вселенной
  • Раздел IV
  • 1. Химия в системе "общество-природа"
  • I Химические обозначения
  • Раздел V
  • I Теории возникновения жизни
  • 1.1. Креационизм
  • 1.2. Самопроизвольное (спонтанное) зарождение
  • 1.3. Теория стационарного состояния
  • 1.4. Теория панспермии
  • 1.5. Биохимическая эволюция
  • 2.1. Теория эволюции Ламарка
  • 2.2. Дарвин, Уоллес и происхождение видов в результате естественного отбора
  • 2.3. Современное представление об эволюции
  • 3.1. Палеонтология
  • 3.2. Географическое распространение
  • 3.3. Классификация
  • 3.4. Селекция растений и животных
  • 3.5. Сравнительная анатомия
  • 3.6. Адаптивная радиация
  • 3.7. Сравнительная эмбриология
  • 3.8. Сравнительная биохимия
  • 3.9. Эволюция и генетика
  • Раздел VI. Человек
  • I Происхождение человека и цивилизации
  • 1.1.Возникновение человека
  • 1.2. Проблема этногенеза
  • 1.3. Культурогенез
  • 1.4. Появление цивилизации
  • I Человек и биосфера
  • 7.1.Концепция в.И. Вернадского о биосфере и феномен человека
  • 7.2. Космические циклы
  • 7.3. Цикличность эволюции. Человек как космическое существо
  • I оглавление
  • Раздел I. Научный метод 7
  • Раздел II. История естествознания 42
  • Раздел III. Элементы современной физики 120
  • Раздел IV. Основные понятия и представления химии246
  • Раздел V.. Возникновение и эволюция жизни 266
  • Раздел VI. Человек 307
  • 344007, Г. Ростов-на-Дону,
  • 344019, Г. Ростов-на-Дону, ул. Советская, 57. Качество печати соответствует предоставленным диапозитивам.
  • 2.2. Принцип наименьшего действия

    В XVIII веке происходит дальнейшее накопление и систематизация научных результатов, отмеченные тенден­цией объединения отдельных научных достижений в стро­го упорядоченную, связную картину мира с помощью систематического применения методов математическо­го анализа к исследованию физических явлений. Рабо­та многих блестящих умов в этом направлении привела к созданию базисной теории механистической исследова­тельской программы - аналитической механики, на осно­ве положений которой были созданы различные фунда­ментальные теории, описывающие конкретный класс конк-

    ретных явлений: гидродинамика, теория упругости, аэро­динамика и т. д. Одним из важнейших результатов ана­литической механики является принцип наименьшего действия (вариационный принцип), имеющий важное зна­чение для понимания процессов, происходящих в физике конца XX века.

    Корни возникновения вариационных принципов в на­уке уходят в Древнюю Грецию и связаны с именем Геро-на из Александрии. Идея любого вариационного принци­па состоит в том, чтобы варьировать (изменять) некоторую величину, характеризующую данный процесс, и отбирать из всех возможных процессов тот, для которого данная вели­чина принимает экстремальное (максимальное или мини­мальное) значение. Герон попытался объяснить законы отражения света, варьируя величину, характеризующую длину пути, проходимым лучом света от источника к на­блюдателю при отражении его от зеркала. Он пришел к выводу, что из всех возможных путей луч света выбирает кратчайший (из всех геометрически возможных).

    В XVII веке, спустя две тысячи лет, французский мате­матик Ферма обратил внимание на принцип Герона, распро­странил его для сред с различными показателями прелом­ления, переформулировав его в связи с этим в терминах времени. Принцип Ферма гласит: в преломляющей среде, свойства которой не зависят от времени, световой луч, про­ходя через две точки, выбирает себе такой путь, чтобы вре­мя, необходимое ему для прохождения от первой точки ко второй, было минимальным. Принцип Герона оказывается частным случаем принципа Ферма для сред с постоянным коэффициентом преломления.

    Принцип Ферма привлек пристальное внимание со­временников. С одной стороны, он как нельзя лучше сви­детельствовал о «принципе экономии» в природе, о ра­циональном божественном замысле, реализованном в уст­ройстве мира, с другой - он противоречил ньютоновской корпускулярной теории света. Согласно Ньютону получа­лось, что в более плотных средах скорость света должна быть больше, в то время как из принципа Ферма вытека­ло, что в таких средах скорость света становится меньшей.

    В 1740 году математик Пьер Луи Моро де Мопертюи, критически анализируя принцип Ферма и следуя теоло-

    гическим мотивам о совершенстве и наиболее экономном устройстве Вселенной, провозгласил в работе «О различ­ных законах природы, казавшихся несовместимыми» принцип наименьшего действия. Мопертюи отказался от наименьшего времени Ферма и ввел новое понятие - дей­ствие. Действие равняется произведению импульса тела (количества движения Р = mV) на пройденный телом путь. Время не имеет какого-либо преимущества перед простран­ством, равно как и наоборот. Поэтому свет выбирает не кратчайший путь и не наименьшее время для его прохож­дения, а согласно Мопертюи, «выбирает путь, дающий бо­лее реальную экономию: путь, по которому он следует, - это путь, на котором величина действия минимальна». Принцип наименьшего действия в дальнейшем был развит в работах Эйлера и Лагранжа; он явился основой, на ко­торой Лагранж развил новую область математического анализа - вариационное исчисление. Дальнейшее обобще­ние и завершенную форму этот принцип получил в рабо­тах Гамильтона. В обобщенном виде принцип наименьше­го действия использует понятие действия, выраженного не через импульс, а через функцию Лагранжа. Для случая од­ной частицы, движущейся в некотором потенциальном поле, функция Лагранжа может быть представлена как разность кинетическойи потенциальной энергии:

    (Понятие «энергия» подробно обсуждается в главе 3 настоящего раздела.)

    Произведениеназывается элементарным действи­ем. Полным действием называется сумма всех значений на всем рассматриваемом интервале времен, иными словами, полное действие А:

    Уравнения движения частицы могут быть получены с помощью принципа наименьшего действия, согласно которо­му реальное движение происходит так, что действие оказы­вается экстремальным, то есть его вариация обращается в 0:

    Вариационный принцип Лагранжа-Гамильтона легко допускает распространение на системы, состоящие из не-

    скольких (множества) частиц. Движение таких систем обыч­но рассматривают в абстрактном пространстве (удобный ма­тематический прием) большого числа измерений. Скажем, для N точек вводят некоторое абстрактное пространство 3N координат N частиц, образующих систему, называемую конфи­гурационным пространством. Последовательность различных состояний системы изображается кривой в этом конфигу­рационном пространстве - траекторией. Рассматривая все возможные пути, соединяющие две заданные точки это­го 3N-Mepнoгo пространства, можно убедиться, что реаль­ное движение системы происходит в соответствии с прин­ципом наименьшего действия: среди всех возможных тра­екторий реализуется та, для которой действие экстремально по всему интервалу времени движения.

    При минимизации действия в классической механике получают уравнения Эйлера-Лагранжа, связь которых с законами Ньютона хорошо известна. Уравнения Эйлера-Лагранжа для лагранжиана классического электромагнит­ного поля оказываются уравнениями Максвелла. Таким образом, мы видим, что использование лагранжиана и прин­ципа наименьшего действия позволяет задавать динамику частиц. Однако лагранжиан обладает еще одной важной особенностью, что и сделало лагранжев формализм основ­ным в решении практически всех задач современной фи­зики. Дело в том, что наряду с ньютоновской механикой в физике уже в XIX веке были сформулированы законы со­хранения для некоторых физических величин: закон со­хранения энергии, закон сохранения импульса, закон сохра­нения момента импульса, закон сохранения электрическо­го заряда. Число законов сохранения в связи с развитием квантовой физики и физики элементарных частиц в на­шем столетии стало еще больше. Возникает вопрос, как найти общую основу для записи как уравнений движения (скажем, законов Ньютона или уравнений Максвелла), так и сохраняющихся во времени величин. Оказалось, что та­кой основой является использование лагранжева форма­лизма, ибо лагранжиан конкретной теории оказывается инвариантным (неизменным) относительно преобразований, соответствующих конкретному рассматриваемому в данной теории абстрактному пространству, следствием чего и яв­ляются законы сохранения. Эти особенности лагранжиа-

    на привели к целесообразности формулировки физических теорий на языке лагранжианов. Осознание этого обстоя­тельства пришло в физику благодаря возникновению тео­рии относительности Эйнштейна.

    "

    Принцип наименьшего действия, впервые точно сформулированный Якоби, аналогичен принципу Гамильтона, но менее общ и более труден для доказательства. Этот принцип применим только к тому случаю, когда связи и силовая функция не зависят от времени и когда, следовательно, существует интеграл живой силы.

    Этот интеграл имеет вид:

    Принцип Гамильтона, изложенный выше, утверждает, что вариация интеграла

    равна нулю при переходе действительного движения ко всякому другому бесконечно близкому движению, которое переводит систему из того же начального положения в то же конечное положение за тот же промежуток времени.

    Принцип Якоби, наоборот, выражает свойство, движения, не зависящее от времени. Якоби рассматривает интеграл

    определяющий действие. Установленный им принцип утверждает, что вариация этого интеграла равна нулю, когда мы сравниваем действительное движение системы со всяким другим бесконечно близким движением, переводящим систему из того же начального положения в то же конечное положение. При этом мы не обращаем внимания на затрачиваемый промежуток времени, но соблюдаем уравнение (1), т. е. уравнение живой силы с тем же значением постоянной h, что и в действительном движении.

    Это необходимое условие экстремума приводит, вообще говоря, к минимуму интеграла (2), откуда и происходит название принцип наименьшего действия. Условие минимума представляется наиболее естественным, так как величина Т существенно положительна, и потому интеграл (2) необходимо должен иметь минимум. Существование минимума может быть строго доказано, если только промежуток времени - достаточно мал. Доказательство этого положения можно найти в известном курсе Дарбу по теории поверхностей. Мы, однако, не будем приводить его здесь и ограничимся выводом условия

    432. Доказательство принципа наименьшего действия.

    При действительном вычислении мы встречаемся с одним затруднением, которого нет в доказательстве теоремы Гамильтона. Переменная t не остается более независимой от вариаций; поэтому вариации q i и q. связаны с вариацией t сложным соотношением, которое следует из уравнения (1). Самый простой способ обойти это затруднение заключается в том, чтобы изменить независимую переменную, выбрав такую, значения которой располагались бы между постоянными пределами, не зависящими от времени. Пусть к есть новая независимая переменная, пределы которой и предполагаются не зависящими от t. При перемещении системы параметры и t будут функциями от этой переменной

    Пусть буквы со штрихами q будут обозначать производные от параметров q по времени.

    Так как связи, по предположению, не зависят от времени, то декартовы координаты х, у, z являются функциями от q, не содержащими время. Поэтому их производные будут линейными однородными функциями от q и 7 будет однородной квадратичной формой от q, коэффициенты которой суть функции от q. Имеем

    Чтобы отличать производные q по времени, обозначим при помощи скобок, (q), производные от q, взятые по и положим в соответствии с этим

    тогда будем иметь

    и интеграл (2), выраженный через новую независимую переменную А, примет вид;

    Производную можно исключить при помощи теоремы живой силы. Действительно, интеграл живой силы будет

    Подставив это выражение в формулу для приведем интеграл (2) к виду

    Интеграл, определяющий действие, принял, таким образом, окончательный вид (3). Подинтегральная функция есть квадратный корень из квадратичной формы от величин

    Покажем, что дифференциальные уравнения экстремалей интеграла (3) представляют собой в точности уравнения Лагранжа. Уравнения экстремалей, на основании общих формул вариационного исчисления, будут:

    Умножим уравнения на 2 и выполним частные дифференцирования, принимая во внимание, что не содержит тогда получим, если не писать индекса ,

    Это уравнения экстремалей, выраженные через независимую переменную Задача заключается теперь в том, чтобы возвратиться к независимой переменной

    Так как Г есть однородная функция второй степени от и - однородная функция первой степени, то имеем

    С другой стороны, к множителям при производных в уравнениях экстремалей можно применить теорему живой силы, которая приводит, как мы видели выше, к подстановке

    В результате всех подстановок уравнения экстремалей приводятся к виду

    Мы пришли, таким образом, к уравнениям Лагранжа.

    433. Случай, когда нет движущих сил.

    В случае, когда движущих сил нет, уравнение живой силы есть и мы имеем

    Условие, что интеграл есть минимум, заключается в данном случае в том, что соответствующее значение -10 должно быть наименьшим. Таким образом, когда движущих сил нет, то среди всех движений, при которых живая сила сохраняет одно и то же данное значение, действительное движение есть то, которое переводит систему из ее начального положения в конечное положение в кратчайшее время.

    Если система сводится к одной точке, движущейся по неподвижной поверхности, то действительное движение, среди всех движений по поверхности, совершающихся с той же скоростью, есть такое движение, при котором точка переходит из своего начального положения в конечное положение в кратчайший

    промежуток времени. Иначе говоря, точка описывает на поверхности кратчайшую линию между двумя ее положениями, т. е. геодезическую линию.

    434. Замечание.

    Принцип наименьшего действия предполагает, что система имеет несколько степеней свободы, так как если бы имелась лишь одна степень свободы, то одного уравнения было бы достаточно для определения движения. Так как движение может быть в данном случае вполне определено уравнением живой силы, то действительное движение будет единственным, удовлетворяющим этому уравнению, и потому не может быть сравниваемо с каким-либо другим движением.


    Похожие публикации